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Abstract 

Resource and cost optimization techniques in cloud computing environments target minimizing 

expenditure while ensuring efficient resource utilization. This study categorizes these techniques into 

three primary groups: Cloud and VM-focused strategies, Workflow techniques, and Resource Utilization 

and Efficiency techniques. Cloud and VM-focused strategies predominantly concentrate on the 

allocation, scheduling, and optimization of resources within cloud environments, particularly virtual 

machines. These strategies aim at a balance between cost reduction and adhering to specified deadlines, 

while ensuring scalability and adaptability to different cloud models. However, they may introduce 

complexities due to their dynamic nature and continuous optimization requirements. Workflow 

techniques emphasize the optimal execution of tasks in distributed systems. They address inconsistencies 

in Quality of Service (QoS) and seek to enhance the reservation process and task scheduling. By 

employing models, such as Integer Linear Programming, these techniques offer precision. But they might 

be computationally demanding, especially for extensive problems. Techniques focusing on Resource 

Utilization and Efficiency attempts to maximize the use of available resources in an energy-efficient and 

cost-effective manner. Considering factors like current energy levels and application requirements, these 

models aim to optimize performance without overshooting budgets. However, a continuous monitoring 

mechanism might be necessary, which can introduce additional complexities.  

Keywords:  Cloud Computing, Cost Optimization, Resource Utilization, VM-focused Strategies, Workflow 

Techniques, Energy Efficiency 

__________________________________________________________________________

Introduction  

Cloud computing refers to the delivery of various computing services, such as storage, 

processing, and networking, over the internet [1]. This infrastructure paradigm shift enables 

organizations and individuals to access and utilize computational resources without the need for 

owning or managing the underlying hardware. Instead, these resources are provisioned and 

managed by third-party entities, often referred to as cloud service providers. The offered 

services can be broadly segmented into several categories, including Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), each serving distinct 

operational needs. The significance of cloud computing in today's technological environment is 
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profound. As digital transformation becomes increasingly important for businesses, the agility, 

flexibility, and scalability provided by cloud environments have become necessary [2]. Not only 

does it eliminate the capital expenditure associated with procuring and maintaining physical 

infrastructures, but it also ensures that businesses can rapidly adapt to changing market 

demands. Additionally, with the rise of big data, artificial intelligence, and the Internet of Things 

(IoT), the ability to process vast datasets in real-time necessitates the computational prowess 

that cloud platforms readily offer [3]. 

Inadequate resource management in cloud environments brings about multiple complications. 

Performance issue emerge when resources are not allocated efficiently, causing application 

delays, downtimes, or in severe cases, crashes. Such interruptions can have detrimental effects 

on business operations, leading to potential revenue losses and a damaged brand reputation. 

Conversely, allocating excess resources beyond requirements results in wastage. Even though 

this approach might prevent immediate operational issues, it causes organizations to incur costs 

for unused services. The inherent scalability and flexibility of cloud computing, if not managed 

proficiently, can become problematic. Absent a strategic resource management approach, 

organizations may find themselves in a cycle of constant adjustments, leading to operational 

inefficiencies and unpredictable expenditures. Furthermore, uncontrolled expenses in cloud 

settings can diminish the cost-saving benefits that initially attract organizations to the cloud. In 

a competitive business environment, maintaining a balance between operational performance 

and cost efficiency is not merely a technical challenge but a foundational element for sustained 

success. 

Workflows play an integral role in the framework of scientific applications within distributed 

systems. Conventionally, these workflows are delineated by a Directed Acyclic Graph (DAG) 

[4]–[6] . In this model, each computational task is symbolized as a node, whereas each data or 

control dependency that exists between these tasks is denoted by a directed edge connecting the 

respective nodes. Given the paramount significance of these workflow applications, numerous 

Grid projects have emerged to address this need. These systems are crafted to not only define 

but also manage and execute workflows on the Grid.  

The success witnessed in these Grid projects has subsequently paved the way for new research 

directions. One of the prominent areas of exploration is the feasibility and efficiency of running 

large-scale scientific workflows on Cloud-based systems. The transition to Cloud systems 

brings about potential advantages, such as scalability, flexibility, and cost-effectiveness. As 

distributed computing evolves, the Cloud emerges as a vital infrastructure that can potentially 

support the requirements of scientific workflows, given its inherent attributes. 

With this transition towards the Cloud, several recent versions of Grid workflow management 

systems have incorporated features that facilitate this shift. These modifications and adaptations 

indicate a trend wherein Cloud systems are increasingly being viewed as viable platforms for 
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executing large-scale scientific workflows, reflecting the evolutionary trajectory of distributed 

computing systems. 

Scientific Workflow Scheduling (SWFS) refers to the process of mapping and scheduling tasks 

or jobs from a scientific workflow onto distributed computing resources to achieve specific 

objectives, such as minimizing execution time or cost [7], [8]. Scientific workflows are 

structured, organized sequences of computational tasks designed to achieve a particular 

scientific goal. These tasks might be data processing, simulations, or complex analyses that 

require multiple computational steps. Given the heterogeneous nature of distributed computing 

resources—such as different types of processors, varying amounts of memory, and diverse 

network bandwidths—SWFS aims to efficiently allocate these tasks to the available resources. 

The challenges in SWFS include handling task dependencies [9], [10], optimizing for multiple 

objectives, dealing with resource failures or uncertainties, and addressing the dynamic nature of 

resources and tasks. Efficient SWFS can lead to reduced turnaround times and more optimal use 

of computational resources, both of which are crucial for advancing scientific discoveries in 

various domains. 

Scientific Workflow Scheduling (SWFS) in cloud and grid computing poses intricate 

challenges, particularly when focusing on cost optimization during workflow execution [11], 

[12]. One core element of this challenge is addressing the needs of different users who, more 

often than not, find themselves in competition for limited resources within the cloud or grid 

computing environments. This competition is driven by the need to satisfy Quality of Service 

(QoS) constraints. These constraints ensure that the services provided meet certain standards, 

which, in turn, can influence the overall cost of operations. 

Further complicating the issue of cost optimization in SWFS is the presence of inter-

dependencies among workflow tasks. These inter-dependencies mandate a coordinated and 

well-orchestrated execution of tasks to ensure the seamless flow and successful completion of 

workflows. Any disruptions or inefficiencies can lead to increased costs. An additional 

challenge arises from the high communication costs associated with these inter-dependencies. 

Specifically, as tasks rely on one another, there's a necessity for data transfer between different 

resources. This data transfer, especially if frequent or involving large volumes of data, can lead 

to substantial communication costs. 

Resource and Cost Optimization Techniques in cloud computing environments can be 

categorized into three principal categories: Cloud and VM-focused strategies, Workflow 

techniques, and Resource Utilization and Efficiency techniques. The primary objective of the 

study is to conduct an in-depth analysis and categorization of the various techniques used for 

resource and cost optimization in cloud computing environments. The research attempts to 

discuss the methodologies and strategies in use, presented in Table 1, evaluating their 

advantages, challenges, and specific applications.  We believe that dissecting these techniques 
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into distinct groups based on their functionality and focus, we can offer clarity and a structured 

overview of the domain. 

Table 1. Contemporary Techniques for Resource and Cost Management 

Technique Description 

SaaS Cloud Partial Critical Paths 

(SCPCP) [13] 

Identifies critical paths within a workflow in the SaaS cloud model, 

optimizing costs without violating specified deadlines. 

Hybrid Cloud Optimized Cost 

model (HCOC) [14] 

Operates in hybrid cloud environments, scheduling workflows to 

minimize costs while meeting set deadlines. 

Scalable Heterogeneous Earliest-

Finish-Time algorithm [15] 

Prioritizes tasks for early completion in heterogeneous environments, 

offering scalability and resource adjustment based on demands. 

Workflow-aware Preprocessing 

Provisioning Dynamic Scheduling 

(WPPDS) [16] 

Tailored for scientific workflows, incorporates preprocessing and 

dynamic provisioning for optimal task scheduling. 

Dynamic Provisioning Dynamic 

Scheduling [17] 

Focuses on flexibility, adjusting resource allocation and task scheduling 

based on current demands and conditions. 

Workflow Orchestrator for 

Distributed Systems Architecture 

[18] 

Addresses inconsistencies in Quality of Service (QoS) features in 

distributed systems, optimizing batch queues for better performance. 

Multi-cost job routing and 

scheduling [19] 

Enhances resource reservation by providing insights into data 

transmission and task completion timing while considering multiple costs. 

Integer Linear Programming 

(ILP) technique [20] 

Utilizes linear equations and inequalities to find optimal solutions for 

scheduling challenges, known for precision but computationally 

demanding. 

Compatibility of Hybrid Processor 

Scheduler [21] 

Selects resources based on their energy levels and application 

requirements, ensuring smart choices for optimal resource utilization. 

Partitioning-Based Workflow 

Scheduling (PBWS)  [22], [23] 

Uses partitioned Directed Acyclic Graph (DAG) to minimize 

communication overheads, reducing both communication costs and 

workflow execution time. 

 

Cloud and VM-focused Strategies 

SaaS Cloud Partial Critical Paths (SCPCP) 

The SaaS Cloud Partial Critical Paths (SCPCP) introduces a distinctive approach to optimizing 

workflow execution in a cloud environment. Specifically designed for the Software as a Service 

(SaaS) model, it centers on the concept of Partial Critical Paths (PCP). The primary goal of this 

algorithm is to strike a balance between cost-efficiency and adherence to a user-defined 

deadline. By identifying the critical paths within a workflow, SCPCP seeks to streamline costs 

without violating the set deadlines. To achieve this, the algorithm takes an iterative approach, 

scheduling the partial critical paths that culminate at tasks scheduled in prior iterations. 

A feature of the SCPCP method is its scheduling approach, which is fundamentally 

retrogressive. Rather than scheduling tasks in a linear or forward direction, this technique works 

backward. The inherent nature of this reverse scheduling process means that there may be 

occasions when a task within a partial critical path cannot be scheduled appropriately. In such 

cases, additional constraints are incorporated into the scheduling process. This forces the 

algorithm to restart and attempt the scheduling process anew. An observation reveals that the 
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SCPCP has characteristics in common with the Maximum Dot Product (MDP) method. 

However, an intrinsic challenge with the SCPCP method is its time complexity. Given the 

backward scheduling nature and the potential for multiple rescheduling events, the algorithm 

can demand significant processing time during its execution. 

SCPCP algorithm  
Begin  

    Determine available computation services  

    Add nodes tentry and texit to G with their dependencies  

    For each task ti in G do  

        Compute EST(ti), EFT(ti), and LFT(ti)  

    EndFor  

    AST(tentry) = 0  

    AST(texit) = D  

    Mark tentry and texit as assigned  

    AllocateAncestors(texit)  

End  

Algorithm AllocateAncestors(t):  

Begin  

    While t has an unassigned parent do  

        PCP = empty list  

        ti = t  

        While ti has an unassigned parent do  

            Add CriticalParent(ti) to the beginning of PCP  

            ti = CriticalParent(ti)  

        EndWhile  

        AssignPath(PCP)  

        For each task ti in PCP do  

            Update EST and EFT for all successors of ti  

            Update LFT for all predecessors of ti  

            AllocateAncestors(ti)  

        EndFor  

    EndWhile  

End  

 

 

There is the potential for optimal cost management within a SaaS cloud model. By focusing on 

critical paths and strategically scheduling them, the algorithm ensures that the workflow 

execution is cost-effective. Secondly, the SCPCP method is rigorous about meeting deadlines. 

By its design, it ensures that tasks, especially those on the critical path, are executed within the 

user-defined timeframes, thereby assuring quality of service. One primary concern is its 

specificity. Given that it has been tailored predominantly for the SaaS model, its applicability 

to other cloud models or environments may be limited. This restricts its versatility in diverse 

cloud settings. Additionally, while the algorithm excels at scheduling and executing critical 

paths, it might not always deliver the most optimal results for tasks outside these critical paths. 

The potential for suboptimal execution for non-critical paths can, in some scenarios, affect the 

overall efficiency of the workflow. 

https://researchberg.com/index.php/araic


  

 

Applied Research in Artificial Intelligence and Cloud Computing 

 

 

50 | P a g e  
Cite this research: 

R. S. S. Dittakavi, “An Extensive Exploration of Techniques for Resource and Cost Management in Contemporary Cloud 

Computing Environments,” Appl. Res. Artif. Intell. Cloud Comput., vol. 4, no. 1, pp. 45–61, 2021. 
 

A
n

 E
x

ten
siv

e E
x
p

lo
ratio

n
 o

f T
ech

n
iq

u
es fo

r R
eso

u
rce an

d
 C

o
st M

an
ag

em
en

t in
 C

o
n

tem
p
o

rary
 C

lo
u
d

 C
o

m
p
u
tin

g
 E

n
v

iro
n

m
en

ts 

Hybrid Cloud Optimized Cost model (HCOC) 

The Hybrid Cloud Optimized Cost (HCOC) scheduling algorithm is designed for hybrid cloud 

environments. Its primary goal is to accelerate the execution of workflows to meet a specific 

execution time and to do so at a reduced cost compared to standard greedy algorithms. The 

HCOC algorithm's effectiveness in a hybrid cloud context comes from its ability to understand 

and utilize multicore systems. Additionally, it incorporates cost considerations into its 

scheduling decisions. This combination allows users to influence costs by determining the 

desired workflow execution time based on their preferences. The algorithm can reduce expenses 

in the public cloud as the specified workflow execution time increases. Even when the desired 

execution time is particularly short, HCOC has been shown to produce more efficient schedules 

than the greedy approach by leveraging multicore resources. An additional feature of the HCOC 

algorithm is its adaptability; it can be adjusted to prioritize budgets over strict deadlines, making 

it versatile for varying user needs [24]. 

The procedure begins by initializing all resources within the private cloud, followed by the 

execution of a schedule using the PCH (Private Cloud Heuristic) method. A counter, named 

"iteration", is initiated at zero, serving as a loop control mechanism for the subsequent steps. 

Within the primary loop, several actions are executed based on specific conditions. If the 

makespan, which is a measure of the total time required to complete a set of tasks, exceeds a 

predetermined threshold and the iteration count remains below a predefined size, the iteration 

count is incremented. Following this, a specific node, termed "n_i", is selected based on given 

criteria. The number of node clusters is set, and another loop is entered to select resources from 

public clouds. Resources are chosen by minimizing a specific ratio involving price and core 

count. This process continues until there are no more clusters left to assign. Concurrently, for 

every node "n_i", it's scheduled in a resource such that its Earliest Finish Time (EFT) is 

minimized. The Earliest Start Times (ESTs) and EFTs are recalculated after each node 

scheduling. This cycle of actions repeats until the primary loop's conditions are no longer met, 

culminating in the conclusion of the algorithm. 

 

Figure 1. HCOC algorithm 
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In hybrid cloud settings, HCOC uses multicore 

resources to develop its schedules. The intention 

is to use these resources to produce a schedule 

that balances cost considerations with the need to 

meet specific deadlines. The specialties of the 

HCOC algorithm include its ability to maximize 

the use of multicore resources, leading to more 

efficient scheduling and execution. Additionally, 

it can balance cost considerations with the need 

to meet specific deadlines, providing users with 

control over their expenditure while ensuring 

timely execution. 

The primary challenge lies in its hybrid design, 

which can complicate its implementation. 

Integrating resources from both public and 

private clouds while maintaining efficient 

scheduling can be a complex task. Additionally, 

there might be a continuous need for optimization 

to maintain the algorithm's efficiency. This 

ongoing adjustment can introduce overhead, 

potentially impacting system performance. 
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Scalable Heterogeneous Earliest-Finish-Time algorithm 

operates in two distinct phases: task prioritizing and resource selection. During the task 

prioritizing phase, the algorithm's primary function is to establish a hierarchy of tasks based on 

their urgency. This is achieved through the deployment of a task prioritizing algorithm which 

meticulously ranks tasks according to their determined priority. The outcome of this phase is a 

meticulously curated list of tasks, referred to as ListPriority. 

Subsequent to the task prioritization, the resource selection phase is initiated. Within this phase, 

the Scalable-Heterogeneous-Earliest-Finish-Time (SHEFT) algorithm is introduced, specially 

designed to schedule workflows within a Cloud computing context. SHEFT can be recognized 

as an evolved version of the HEFT algorithm, specifically adapted to map a workflow 

application onto a predefined number of processors. The resource allocation procedure begins 

with an open slate, where any resource might be allocated to any task. The task which stands 

atop the ListPriority due to its high priority rank is the primary candidate for scheduling. For 

every task, denoted as Ti, the algorithm determines both the earliest time it can commence (EST) 

and the earliest time it can conclude (EFT) on each designated resource, Rk. The resource that 

promises the quickest task conclusion time, or minTFT, is momentarily assigned to a variable 

known as RS. Following this, if there exists a resource, RS, available for the task Ti before or 

by its Estimated Ready Time (ERT), then this resource is confirmed for the task, updating its 

available time to the previously calculated minTFT. If no such resource is available, the 

algorithm applies predetermined decision-making rules based on calculated EFTs to ensure the 

task is appropriately scheduled. Throughout this process, the algorithm also accounts for 

resource idleness. If any resource remains inactive beyond a stipulated threshold, it's released, 

ensuring that resources are scaled effectively based on demand. 

Functioning in heterogeneous environments, the primary aim is the efficient and expedited 

completion of tasks. It exhibits adaptability, scaling according to shifting requirements. 

It is evident that it focuses on quick task completion by always targeting the earliest possible 

finishing times. Another significant benefit is its scalability, allowing the system to adjust 

seamlessly according to changes in resource availability and demand. Primarily, its design caters 

predominantly to heterogeneous environments, which may restrict its applicability in other 

settings. Additionally, by always seeking the earliest finish times, there's a potential risk of not 

making full use of available resources, leading to possible underutilization. 

 

Workflow Techniques 

Workflow Orchestrator for Distributed Systems Architecture 

The Workflow Orchestrator designed for Distributed Systems Architecture is a structured 

mechanism that unfolds in three sequential phases: workflow preprocessing, elastic resource 
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provisioning, and task scheduling. Beginning with the workflow preprocessing phase, this stage 

entails the primary analysis and preparation of the workflow. It examines the integral 

components of the workflow to ensure they are ready for further processing and execution. 

Following preprocessing, the next stage is elastic resource provisioning. In this phase, the 

Orchestrator evaluates and adjusts the resources dynamically. Depending on the current 

demands and the specific requirements of the workflow, resources can be provisioned or de-

provisioned to ensure efficient execution. The final stage is task scheduling. This is where the 

actual placement and execution of tasks take place, ensuring that each task is assigned to an 

appropriate resource, considering factors like load, availability, and specific task requirements. 

One of the primary objectives of this Orchestrator is to address the inconsistencies that 

frequently arise in the Quality of Service (QoS) across varying distributed systems. By doing 

so, it places a special emphasis on refining and augmenting batch queues, which are crucial for 

task execution in distributed systems. The intention is to reduce wait times, ensure tasks are 

processed promptly, and optimize overall system performance. 

It offers a noticeable enhancement in the Quality of Service (QoS). By targeting and rectifying 

inconsistencies in QoS across distributed systems, it provides a more uniform and improved 

service quality. Additionally, its approach to resource allocation stands out. By focusing on the 

nuances of batch queues and ensuring their optimal use, resources are employed efficiently, 

reducing wastage and improving system throughput. 

Predominantly, its design and functioning are primarily aligned with distributed systems. This 

specialized focus may restrict its adaptability or functionality in other architectures or 

environments. Moreover, while it strives to address and optimize various QoS parameters, it 

might not encompass all the variables associated with QoS, potentially leaving some aspects 

unaddressed. 

Multi-cost job routing and scheduling 

The Multi-Cost Job Routing and Scheduling mechanism aims to refine the approach to job 

routing and task allocation in computing environments. One of its central features is the 

enhancement of the resource reservation process. By diving deeper into the nuances of resource 

management, this mechanism provides a detailed outlook on the best possible timings for data 

transmission and task execution. What makes this mechanism distinct is its ability to consider 

multiple cost factors. Instead of just focusing on one dimension, such as time or financial 

implications, it holistically assesses various cost elements, providing a comprehensive view that 

aids in making well-informed scheduling decisions. 

This mechanism offers a notable strength is its precision in dictating task initiation times. By 

considering multifaceted costs and employing advanced scheduling algorithms, it can pinpoint 

the most suitable moments to kickstart specific tasks, ensuring optimal resource usage and 

timely execution. Another significant benefit is the redefined resource reservation process. By 
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continuously monitoring and adjusting reservations, the mechanism actively works to prevent 

potential bottlenecks, ensuring smoother, uninterrupted operations. One primary challenge is 

the complexity associated with simultaneously handling various costs. The need to balance 

multiple cost factors can introduce a layer of complication to the scheduling process, potentially 

demanding more sophisticated algorithms and processes. Additionally, to achieve the precision 

it promises, the mechanism might necessitate detailed and accurate data. The absence of such 

data can impact its ability to deliver precise scheduling, meaning that there's a reliance on the 

availability and accuracy of input information. 

Integer Linear Programming (ILP) technique 

Integer Linear Programming (ILP) serves as a potent mathematical method that utilizes linear 

equations to obtain optimal solutions, particularly for complex challenges such as workflow 

scheduling. ILP is fundamentally structured to ensure the finest results by incorporating various 

factors and limitations. 

One significant application of ILP highlighted in the document pertains to workflow scheduling 

in SaaS or PaaS cloud settings. The issue is dual-pronged: on one hand, customers desire their 

tasks to be completed within their expected response time or set deadline; on the other, the SaaS 

or PaaS cloud service providers aim to enhance their profit margins. Addressing this divergence, 

the document proposes an ILP-centered approach, specifically configured to address the 

workflow scheduling dilemma in these cloud scenarios. Two levels of Service Level 

Agreements (SLA) are considered. The initial level describes the accord between the cloud 

service provider and its clientele, while the subsequent level characterizes the pledge between 

the SaaS or PaaS cloud and its IaaS providers. Augmenting the ILP, the document introduces 

two heuristic methods, BMT and BMEMT, constructed to identify workable integer solutions 

in situations where the ILP may be modified. 

Exploring the ILP structure further, an array of elements, constants, and restrictions are 

discussed. Within these elements, certain notations indicate whether a node concludes at a 

specific moment on a particular Virtual Machine (VM), while other notations demonstrate if a 

VM is in use at a certain moment. The primary aim of this ILP is to curtail the cumulative 

expenses related to VM utilization. Designated constraints form the essential guidelines of the 

ILP, ensuring that tasks are allotted correctly, with considerations such as VM accessibility, task 

interdependencies, and individual VM processing capacities. Additionally, these restrictions 

confirm that the count of VMs adheres to the parameters set by IaaS providers or SLAs, and 

that the utilized elements maintain binary characteristics. 

The document also presents a systematic method to decipher the ILP. This iterative method 

begins by triggering a modified ILP solver. Successively, it evaluates unscheduled tasks, and 

upon identification, selects a node and the corresponding element based on the heuristic. A fresh 

constraint is added to the ILP, after which the modified solver re-engages with this revised ILP. 

https://researchberg.com/index.php/araic


  

 

Applied Research in Artificial Intelligence and Cloud Computing 

 

 

55 | P a g e  
Cite this research: 

R. S. S. Dittakavi, “An Extensive Exploration of Techniques for Resource and Cost Management in Contemporary Cloud 

Computing Environments,” Appl. Res. Artif. Intell. Cloud Comput., vol. 4, no. 1, pp. 45–61, 2021. 
 

A
n

 E
x

ten
siv

e E
x
p

lo
ratio

n
 o

f T
ech

n
iq

u
es fo

r R
eso

u
rce an

d
 C

o
st M

an
ag

em
en

t in
 C

o
n

tem
p
o

rary
 C

lo
u
d

 C
o

m
p
u
tin

g
 E

n
v

iro
n

m
en

ts 

The repetition persists until tasks are accurately allotted, after which the definitive answer is 

provided. 

Resource Utilization and Efficiency 

Compatibility of Hybrid Processor Scheduler 

For users, a common dilemma is determining the best resources to request from a public cloud, 

particularly when considering current demands and the overheads linked to these resources. The 

primary purpose of CHPS is to discern which resources from the public cloud should be 

incorporated with the private cloud, ensuring an adequate processing capacity to execute 

workflows within predetermined time frames. 

Figure 2. CHPS algorithm 

 

 

The CHPS system's methodology is divided into three distinct phases. Initially, the process 

revolves around the identification and assignment of processors. This phase is concerned with 

recognizing the available processors and then delegating them based on specific task schedules 

and time parameters. Such an approach ensures that there is a seamless alignment between task 

demands and the processors' capabilities. Subsequently, the system transitions to the second 
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phase, where the spotlight is on optimal resource allocation. At this juncture, the objective is to 

allocate resources to processors in the most efficient manner, ensuring that the needs of tasks 

are met without unnecessary resource wastage. 

The third phase of the CHPS system is a more intricate, going into the broader compatibility 

aspects of the Hybrid Processor Scheduler. Here, the focus is on assessing the scheduler's 

adaptability across a spectrum of processors, ranging from the older, traditional models to the 

contemporary, high-performance ones. Additionally, this phase evaluates the scheduler's 

compatibility with various operating systems and diverse application prerequisites, ensuring a 

versatile performance across multiple platforms. By integrating both low-range and mid-range 

processors with their high-end counterparts, the system promotes a Green IT framework. This 

initiative not only ensures optimal performance but also minimizes e-waste, making it a 

sustainable solution. The integration process is facilitated by the cloud interface, which plays a 

pivotal role in task scheduling and process allocation. The subsequent phases, while technical, 

are essential in ensuring that resources are not only allocated efficiently but also utilized based 

on their capabilities, ensuring that the user tasks, time constraints, and processor abilities are in 

harmony. 

Partitioning-Based Workflow Scheduling  

The Partitioning-Based Workflow Scheduling algorithm at its core shifts the focus from users 

having to define strict boundaries for deadlines and costs. Instead, it introduces a slack 

parameter. This parameter guides the balance between adhering to deadlines and managing 

costs. The central tenet of PBWS revolves around partitioning a workflow into multiple task 

graphs or partitions, with the granularity of these partitions being directly influenced by the 

slack parameter. 

One of the features of PBWS is its adaptability. The algorithm assigns each partition to the cloud 

resource that delivers the optimal balance between execution time (makespan) and cost. 

However, PBWS does not adopt a rigid partitioning structure. The partition sizes can be 

dynamically adjusted by redistributing tasks across different partitions. This flexibility ensures 

that resource assignments can be continuously optimized based on changing requirements and 

conditions. 

The PBWS approach works in three distinct steps. The first is the partitioning phase. Here, the 

aim is to divide the workflow such that the resultant partitions maintain their dependencies in a 

manner that they can still be represented as a DAG. This structured partitioning simplifies 

subsequent resource assignments. In the second phase, or the partition adjustment step, tasks 

are strategically rearranged across partitions. The intention behind this step is to reduce the 

overall makespan further. The resource assignment phase comes into play. This phase is 

responsible for pairing tasks with the most suitable resources, ensuring that resource idle times 

are minimized, leading to cost savings. 
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Figure 3. resource scheduling in PBWS 

 

When viewed considering its application, PBWS, 

by applying a partitioned Directed Acyclic Graph 

(DAG), seeks to minimize communication 

overheads and boost execution times. The 

advantages are clear: communication is 

streamlined, significantly cutting down on 

overheads, and the execution of the workflow is 

time-efficient. However, the approach includes 

the high computational demands required during 

the partitioning process. Moreover, there's 

always an inherent risk of ending up with 

suboptimal partitions, especially if the graph 

specifications are particularly complex. This 

could inadvertently affect the anticipated 

efficiencies that the algorithm promises. 

The resource assignment under this method 

comprises two primary stages: the identification 

of the resource set and the allocation of resources. 

The initial phase, resource set identification, aims 

to discern which types of resource sets should be 

designated for partitions in a way that minimizes 

the wait times caused by data dependencies 

between partitions. For this, partitions are 

categorized into distinct groups, with each group 

led by a specific partition and associated with 

predecessor partitions linked to the leader. The 

partitions' resource set types are identified based 

on various parameters, such as the execution start 

time and computational time required for tasks. 

An aspect of this phase is the establishment of 

resource set types that reduce overall 

computational time. After establishing the 

resource set types, the resource allocation phase 

ensues, wherein tasks are assigned to specific 

resources. 
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Resource allocation starts by first determining the start (AST) and finish (AFT) times for each 

task based on the previously identified resource set types. The guiding principle here is the slack 

parameter, β, which plays a pivotal role in balancing resource usage and execution time. A value 

range between 0 and 1 for β helps control the allocation of resources to tasks. For instance, a β 

value of 1 prioritizes cost-saving by using the fewest resources, while a value of 0 emphasizes 

reducing execution time even if it necessitates more resources. This phase integrates Upper and 

Lower Bound calculations for each task's AST, considering factors like available resources and 

budget constraints. In essence, the algorithm's flexibility in resource allocation is driven by the 

balance between cost and execution time, ensuring that tasks are executed efficiently while 

adhering to resource and budgetary constraints. 

Conclusion  

Effective resource and cost management holds significant importance in cloud computing. As 

more organizations transition their operations to the cloud, achieving optimal utilization of 

resources becomes crucial. Proper resource management ensures the peak performance and 

responsiveness of applications hosted within the cloud. In many cloud service models, 

particularly the pay-as-you-go structures, the financial implications are directly tied to resource 

usage. Hence, any wastage or over-provisioning of resources can lead to unnecessary financial 

outlays. Thus, adept management of resources not only upholds application performance but 

also enforces financial discipline. Scientific Workflow Systems (SWFS) in cloud and grid 

computing have risen to prominence due to their capacity to manage and coordinate a multitude 

of computational tasks. Within this context, one predominant challenge is the optimization of 

the cost associated with the execution of these workflows. Cost optimization in SWFS for cloud 

computing is not a straightforward concern. Rather, it includes cost-aware dilemma that 

mandates a nuanced approach. First and foremost, cloud and grid computing environments are 

typically populated by various users. These users invariably compete for the limited resources 

available, aiming to achieve certain Quality of Service (QoS) constraints. Such competition can 

result in contention for resources, driving up costs if not appropriately managed. 

Three principal categories Resource and Cost Optimization Techniques were discussed in this 

study: Cloud and VM-focused strategies, Workflow techniques, and Resource Utilization and 

Efficiency techniques. Cloud and Virtual Machine (VM)-focused strategies mainly focus on 

optimizing resources within a cloud setup, particularly virtual machines, ensuring efficient 

usage and cost minimization. Various techniques fall under this category, each catering to 

specific cloud setups and scenarios. The SaaS Cloud Partial Critical Paths technique, 

specifically designed for Software as a Service (SaaS) cloud models, pinpoints critical paths in 

workflows and aims to optimize costs while adhering to specified timeframes. Another model, 

the Hybrid Cloud Optimized Cost model (HCOC), is particularly effective in hybrid cloud 

setups, leveraging multicore resources. It concentrates on workflow scheduling, balancing 

between cost-effectiveness and deadline adherence. The Scalable Heterogeneous Earliest-

Finish-Time algorithm, as the name suggests, focuses on heterogeneous environments. It ranks 
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tasks based on their completion times, ensuring that they finish at the earliest possible 

opportunity, while also offering scalability to accommodate varying demands. Additionally, the 

Workflow-aware Preprocessing Provisioning Dynamic Scheduling is tailored for scientific 

workflows. It integrates preprocessing steps with dynamic provisioning to ensure efficient 

scheduling. Dynamic Provisioning Dynamic Scheduling approach prioritizes flexibility, 

adjusting both resource allocation and task scheduling according to prevailing demands. 

Workflow techniques primarily deal with optimizing the execution of tasks in cloud 

environments. The Workflow Orchestrator for Distributed Systems Architecture is engineered 

to provide uniformity in the Quality of Service (QoS) offered by various distributed systems. 

By doing so, it focuses on refining batch queues, ultimately leading to heightened performance 

and efficiency. The Multi-cost job routing and scheduling algorithm takes a comprehensive 

view of task management. It provides in-depth insights into resource reservation, specifying the 

ideal times for data transmissions and task completions while constantly keeping an eye on the 

associated costs. Another technique, the Integer Linear Programming (ILP), is a mathematical 

method known for its precision. Utilizing linear equations, it seeks the best possible solutions 

for scheduling challenges, although it might be computationally intensive, especially for larger, 

more complex problems. 

Techniques under the resource utilization and efficiency category prioritize making the most 

out of available resources, ensuring they are used in the most cost-effective and energy-efficient 

manner. The Compatibility of Hybrid Processor Scheduler exemplifies this approach. It selects 

resources based on their current energy levels and the specific needs of the applications they 

support, ensuring efficient energy consumption. In scenarios where budgeting is crucial, the 

Budget-based constraint workflow scheduling become effective. It schedules tasks, ensuring 

that they align with the user-defined budget, thus emphasizing cost-effectiveness.  
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