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Abstract 

Background: Predicting resource usage in cloud environments is crucial for optimizing costs. While 

recurrent neural networks and time series techniques are commonly used for forecasting, their limitations, 

such as vanishing gradients and lack of memory retention, necessitate the use of convolutional networks 

for modeling sequential data. 

Objective: This research proposes a temporal convolutional network (TCN) to forecast CPU usage and 

memory consumption in cloud environments. TCNs utilize dilated convolutions to capture temporal 

dependencies and maintain a fixed-sized receptive field, enabling them to handle sequences of varying 

lengths and capture long-term dependencies. The performance of the TCN is compared with Long Short-

Term Memory (LSTM) Networks, Gated Recurrent Unit (GRU) Networks, and Multilayer Perceptron 

(MLP). 

Dataset: The study employs the Google Cluster Workload Traces 2019 data, focusing on CPU and 

memory utilization ranging between 5% and 95% over a 24-hour period, extracted from the first ten days. 

Results: The TCN outperforms other methods in predicting both CPU usage and memory consumption. 

For CPU usage prediction, the TCN achieves lower error metrics, including Mean Squared Error (MSE) 

of 0.05, Root Mean Squared Error (RMSE) of 0.22, Mean Absolute Error (MAE) of 0.18, and Mean 

Absolute Percentage Error (MAPE) of 3.5%. The TCN also demonstrates higher forecast accuracy, with 

FA1 = 85%, FA5 = 95%, and FA10 = 98%. Similar performance improvements are observed for memory 

consumption prediction, with the TCN achieving lower error metrics and higher forecast accuracy 

compared to LSTM, GRU, and MLP. The TCN exhibits better computational efficiency in terms of 

training time, inference time, and memory usage. 

Conclusion: The proposed temporal convolutional network (TCN) demonstrates good performance in 

forecasting CPU usage and memory consumption in cloud environments compared to LSTM, GRU, and 

MLP. Since TCN's can capture temporal dependencies and handle sequences of varying lengths makes it 

a promising approach for resource usage prediction and cost optimization in cloud computing. 

Keywords:  Cloud Environments, Convolutional Networks, Forecasting, Resource Usage, Temporal Convolutional 

Networks 

_________________________________________________________________________

Introduction  

Cloud computing involves the delivery of 

computing services over the internet. These 

services include servers, storage, databases, 

networking, software, analytics, and 

intelligence [1]. The concept of cloud 

computing dates back to the 1960s. 

However, it was not until the late 1990s and 

early 2000s that the technology began to 

take shape [2]. The term "cloud computing" 

was first used in 1996 by Compaq 

Computer Corporation. In 2006, Amazon 
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launched its Elastic Compute Cloud (EC2) 

service, which allowed users to rent virtual 

computers to run their own applications. 

This marked a significant milestone in the 

history of cloud computing. 

Cloud computing offers numerous benefits, 

including cost savings, scalability, 

flexibility, and accessibility. With cloud 

computing, businesses can reduce their IT 

infrastructure costs and focus on their core 

competencies. They can also scale their 

computing resources up or down based on 

their needs. Additionally, cloud computing 

enables users to access their data and 

applications from anywhere, at any time, 

using any device with an internet 

connection [3]. 

I. Types of Cloud Computing Services 

There are three main types of cloud 

computing services: Infrastructure as a 

Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). 

A. Infrastructure as a Service (IaaS) 

IaaS is a cloud computing service that 

provides users with virtualized computing 

resources over the internet. These resources 

include servers, storage, and networking. 

Examples of IaaS providers include 

Amazon Web Services (AWS), Microsoft 

Azure, and Google Cloud Platform. 

The benefits of IaaS include cost savings, 

scalability, and flexibility. With IaaS, 

businesses can avoid the upfront costs of 

purchasing and maintaining their own 

hardware. They can also scale their 

computing resources up or down based on 

their needs. Additionally, IaaS allows 

businesses to focus on their core 

competencies rather than worrying about IT 

infrastructure. However, IaaS also has some 

drawbacks. It requires a certain level of 

technical expertise to manage and maintain 

the virtualized computing resources. 

Additionally, security and compliance can 

be a concern, as businesses must ensure that 

their data is properly secured in the cloud. 

B. Platform as a Service (PaaS) 

PaaS is a cloud computing service that 

provides users with a platform for 

developing, testing, and deploying 

applications. Examples of PaaS providers 

include Heroku, Google App Engine, and 

Microsoft Azure. The benefits of PaaS 

include faster development times, 

scalability, and cost savings. With PaaS, 

developers can focus on writing code rather 

than worrying about infrastructure. They 

can also scale their applications up or down 

based on demand. Additionally, PaaS can 

be more cost-effective than building and 

maintaining an in-house development 

platform. It can be less flexible than IaaS, 

as users are limited to the tools and 

frameworks provided by the PaaS provider. 

Additionally, vendor lock-in can be a 

concern, as applications developed on a 

specific PaaS platform may not be easily 

portable to other platforms.  

C. Software as a Service (SaaS) 

SaaS is a cloud computing service that 

provides users with access to software 

applications over the internet. Examples of 

SaaS providers include Salesforce, Google 

Apps, and Microsoft Office 365. 

The benefits of SaaS include accessibility, 

cost savings, and scalability. With SaaS, 

users can access their applications from 
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anywhere, at any time, using any device 

with an internet connection. Additionally, 

SaaS can be more cost-effective than 

purchasing and maintaining software 

licenses. SaaS providers also handle 

updates and maintenance, which can save 

businesses time and money. Security and 

privacy can be a concern, as businesses 

must trust the SaaS provider to properly 

secure their data. Additionally, 

customization options may be limited, as 

users are typically limited to the features 

and functionality provided by the SaaS 

provider [5]. 

II. Cloud Deployment Models 

There are four main cloud deployment 

models: public cloud, private cloud, hybrid 

cloud, and community cloud. 

A. Public Cloud 

A public cloud is a cloud computing 

deployment model in which computing 

resources are owned and operated by a 

third-party provider and shared among 

multiple customers over the internet. 

Examples of public cloud providers include 

Amazon Web Services (AWS), Microsoft 

Azure, and Google Cloud Platform. 

The advantages of public cloud include cost 

savings, scalability, and accessibility. With 

public cloud, businesses can avoid the 

upfront costs of purchasing and maintaining 

their own hardware. They can also scale 

their computing resources up or down based 

on their needs. Additionally, public cloud 

enables users to access their data and 

applications from anywhere, at any time, 

using any device with an internet 

connection. As businesses must trust the 

cloud provider to properly secure their data. 

Additionally, performance may be affected 

by network latency and bandwidth 

limitations. 

B. Private Cloud 

A private cloud is a cloud computing 

deployment model in which computing 

resources are dedicated to a single 

organization and not shared with other 

customers. Private clouds can be hosted on-

premises or by a third-party provider. The 

advantages of private cloud include greater 

control, customization, and security. With 

private cloud, businesses have complete 

control over their computing resources and 

can customize them to meet their specific 

needs. Additionally, private cloud can 

provide greater security and compliance, as 

businesses can ensure that their data is 

properly secured and meets regulatory 

requirements. It can be more expensive than 

public cloud, as businesses must purchase 

and maintain their own hardware. 

scalability may be limited, as businesses are 

responsible for provisioning and managing 

their own computing resources. 

C. Hybrid Cloud 

A hybrid cloud is a cloud computing 

deployment model that combines public 

and private clouds, allowing data and 

applications to be shared between them. 

Hybrid cloud enables businesses to take 

advantage of the benefits of both public and 

private clouds. 

The advantages of hybrid cloud include 

flexibility, scalability, and cost savings. 

With hybrid cloud, businesses can run 

sensitive workloads on a private cloud 

while leveraging the scalability and cost 

savings of public cloud for less sensitive 
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workloads. Additionally, hybrid cloud 

enables businesses to easily move 

workloads between public and private 

clouds as needed. Hybrid cloud can be more 

complex to manage than a single cloud 

deployment model, as businesses must 

ensure that data and applications can be 

seamlessly shared between public and 

private clouds. Network latency and 

bandwidth limitations can affect 

performance. 

D. Community Cloud 

A community cloud is a cloud computing 

deployment model in which computing 

resources are shared among several 

organizations with common interests or 

requirements. Community clouds can be 

hosted by a third-party provider or by one 

of the participating organizations. 

The advantages of community cloud 

include cost savings, collaboration, and 

customization. With community cloud, 

organizations can share the costs of 

purchasing and maintaining computing 

resources. Additionally, community cloud 

enables organizations to collaborate and 

share resources, which can lead to increased 

efficiency and innovation. Community 

cloud can also be customized to meet the 

specific needs of the participating 

organizations. 

However, community cloud also has some 

disadvantages. Governance and control can 

be a concern, as participating organizations 

must agree on how the computing resources 

will be managed and shared. Additionally, 

security and compliance can be a challenge, 

as each participating organization must 

ensure that their data is properly secured 

and meets regulatory requirements. 

III. Overview of Cloud Resources 

Cloud resources are the fundamental 

building blocks of cloud computing. They 

include compute, storage, and network 

resources that are provisioned and managed 

by cloud providers. These resources are 

essential for running applications and 

storing data in the cloud. 

A. Compute Resources 

Compute resources are the processing 

power and memory that are used to run 

applications in the cloud. There are three 

main types of compute resources: virtual 

machines (VMs), containers, and serverless 

computing. 

1. Virtual Machines (VMs) 

VMs are software emulations of physical 

computers that run on top of a hypervisor. 

They provide a high degree of flexibility 

and control over the underlying hardware 

and operating system. VMs are ideal for 

running traditional applications that require 

a dedicated operating system and hardware 

resources. 

2. Containers 

Containers are lightweight, portable, and 

self-contained units of software that include 

all the dependencies needed to run an 

application. They provide a more efficient 

and scalable alternative to VMs, as they 

share the same operating system kernel and 

can be quickly provisioned and 

deprovisioned as needed. 

3. Serverless Computing 
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Serverless computing is a cloud computing 

model where the cloud provider 

dynamically manages the allocation of 

compute resources. Developers can focus 

on writing code without worrying about the 

underlying infrastructure. Serverless 

computing is ideal for event-driven and 

highly scalable applications. 

B. Storage Resources 

Storage resources are used to store and 

manage data in the cloud. There are three 

main types of storage resources: object 

storage, block storage, and file storage. 

1. Object Storage 

Object storage is a scalable and cost-

effective storage model that stores data as 

objects in a flat address space. Each object 

is assigned a unique identifier and can be 

accessed using HTTP or HTTPS. Object 

storage is ideal for storing unstructured data 

such as images, videos, and backups. 

2. Block Storage 

Block storage is a storage model that 

presents data as a series of fixed-size 

blocks. Each block is assigned a unique 

identifier and can be accessed using a block 

protocol such as iSCSI or Fibre Channel. 

Block storage is ideal for storing structured 

data such as databases and virtual machine 

disk images. 

3. File Storage 

File storage is a storage model that presents 

data as a hierarchical file system. Files are 

organized into directories and can be 

accessed using protocols such as NFS or 

SMB. File storage is ideal for storing and 

sharing files across multiple users and 

applications. 

C. Network Resources 

Network resources are used to connect 

cloud resources and enable communication 

between them. There are three main types 

of network resources: virtual private clouds 

(VPCs), load balancers, and content 

delivery networks (CDNs). 

1. Virtual Private Clouds (VPCs) 

VPCs are isolated networks within the 

cloud that enable users to launch and 

manage cloud resources in a secure and 

customizable environment. VPCs provide 

control over IP address ranges, subnets, and 

routing tables, and can be connected to on-

premises networks using VPN or direct 

connect. 

2. Load Balancers 

Load balancers are used to distribute 

incoming traffic across multiple instances 

of an application. They improve the 

availability and performance of 

applications by ensuring that no single 

instance is overwhelmed with traffic. Load 

balancers can be configured to route traffic 

based on various criteria such as URL, 

cookie, or IP address. 

3. Content Delivery Networks (CDNs) 

CDNs are networks of geographically 

distributed servers that are used to deliver 

content to users with high availability and 

performance. CDNs cache content at edge 

locations that are closer to the users, 

reducing latency and improving the user 

experience. CDNs are ideal for delivering 
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static content such as images, videos, and 

scripts. 

VI. Factors Affecting Resource Usage 

Several factors can affect the usage of cloud 

resources, including application 

architecture and design, workload 

characteristics, user behavior and traffic 

patterns, and service level agreements 

(SLAs) and performance requirements. 

A. Application Architecture and Design 

The architecture and design of an 

application can have a significant impact on 

resource usage. Monolithic applications 

that are tightly coupled and require a lot of 

resources may not be well-suited for the 

cloud. On the other hand, microservices-

based applications that are loosely coupled 

and can scale independently are ideal for 

the cloud. 

B. Workload Characteristics 

The characteristics of a workload can also 

affect resource usage. There are three main 

types of workloads: 

1. CPU-Intensive Workloads 

CPU-intensive workloads require a lot of 

processing power and can benefit from 

high-performance compute resources such 

as VMs with multiple cores or high-

frequency CPUs. 

2. Memory-Intensive Workloads 

Memory-intensive workloads require a lot 

of memory and can benefit from compute 

resources with large amounts of RAM or in-

memory databases. 

3. I/O-Intensive Workloads 

I/O-intensive workloads require a lot of 

disk or network I/O and can benefit from 

high-performance storage and network 

resources such as solid-state drives (SSDs) 

or high-bandwidth network interfaces. 

C. User Behavior and Traffic Patterns 

User behavior and traffic patterns can also 

affect resource usage. Applications that 

experience unpredictable or bursty traffic 

may require more resources than 

applications with steady and predictable 

traffic. Additionally, applications that are 

accessed by users in different geographic 

regions may require resources that are 

geographically distributed to ensure low 

latency and high performance. 

D. Service Level Agreements (SLAs) and 

Performance Requirements 

SLAs and performance requirements can 

also affect resource usage. Applications 

that require high availability or low latency 

may require more resources than 

applications with less stringent 

requirements. Additionally, SLAs that 

guarantee a certain level of performance or 

uptime may require additional resources to 

ensure that the SLAs are met. 

IV. Monitoring and Measuring Resource 

Usage 

Monitoring and measuring resource usage 

is essential for optimizing the performance 

and cost of cloud applications. It enables 

developers and administrators to identify 

bottlenecks, optimize resource allocation, 

and ensure that applications are meeting 

their SLAs and performance requirements. 

Monitoring resource usage is important for 

several reasons. First, it enables developers 
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and administrators to identify performance 

issues and bottlenecks before they impact 

the end-user experience. Second, it enables 

them to optimize resource allocation and 

reduce costs by identifying underutilized or 

overprovisioned resources. Third, it enables 

them to ensure that applications are meeting 

their SLAs and performance requirements. 

A. Key Performance Indicators (KPIs) for 

Resource Usage 

There are several KPIs that can be used to 

monitor resource usage, including: 

1. CPU Utilization 

CPU utilization measures the percentage of 

time that the CPU is busy processing 

instructions. High CPU utilization can 

indicate that an application is CPU-bound 

and may require additional compute 

resources. 

2. Memory Utilization 

Memory utilization measures the amount of 

memory that is being used by an 

application. High memory utilization can 

indicate that an application is memory-

bound and may require additional memory 

resources. 

3. Network Bandwidth 

Network bandwidth measures the amount 

of data that is being transferred over the 

network. High network bandwidth can 

indicate that an application is network-

bound and may require additional network 

resources. 

4. Storage Capacity 

Storage capacity measures the amount of 

data that is being stored on disk. High 

storage capacity can indicate that an 

application is running out of disk space and 

may require additional storage resources. 

C. Cloud Monitoring Tools and Services 

There are several cloud monitoring tools 

and services that can be used to monitor 

resource usage, including: 

1. Native Cloud Provider Tools 

Most cloud providers offer native 

monitoring tools that can be used to monitor 

resource usage. For example, Amazon Web 

Services (AWS) offers CloudWatch, which 

provides monitoring and observability of 

AWS resources and applications. Similarly, 

Microsoft Azure offers Azure Monitor, 

which provides monitoring and diagnostics 

of Azure resources and applications. 

2. Third-Party Monitoring Solutions 

There are also several third-party 

monitoring solutions that can be used to 

monitor resource usage across multiple 

cloud providers. These solutions often 

provide additional features such as 

application performance monitoring 

(APM), log management, and alert 

management. Examples of third-party 

monitoring solutions include Datadog, New 

Relic, and Splunk. 

Significance of the study 

Predicting resource usage and optimizing 

cost is a growing area of interest in cloud 

computing. As cloud adoption continues to 

grow, organizations are looking for ways to 

optimize their cloud spend and ensure that 

they are getting the most value from their 

cloud investments. 
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One approach to predicting resource usage 

is to use time series forecasting techniques. 

Time series forecasting involves analyzing 

historical data to identify patterns and 

trends, and using that information to predict 

future values. Recurrent Neural Networks 

(RNNs) are a popular choice for time series 

forecasting, as they are designed to handle 

sequential data and can learn long-term 

dependencies. RNNs have certain 

limitations that can impact their 

effectiveness for time series forecasting. 

One of the main challenges is the vanishing 

gradient problem, which occurs when the 

gradients of the loss function become very 

small during training. This can make it 

difficult for the network to learn long-term 

dependencies and can lead to poor 

performance. 

RNNs are designed to process sequential 

data, but they do not have an explicit 

memory mechanism to store and retrieve 

information over long periods of time. This 

can make it difficult for RNNs to capture 

long-term dependencies and can limit their 

effectiveness for time series forecasting. 

To address these limitations, some studies 

have proposed using convolutional neural 

networks (CNNs) for time series 

forecasting [6]. CNNs are a type of neural 

network that are designed to handle grid-

like data, such as images or time series data. 

They use a series of convolutional layers to 

extract features from the input data and can 

learn hierarchical representations of the 

data [7]. 

CNNs for time series forecasting do not 

suffer from the vanishing gradient problem. 

This is because the gradients in a CNN are 

computed using a fixed number of steps, 

regardless of the length of the input 

sequence. This allows CNNs to learn long-

term dependencies more effectively than 

RNNs [8]. 

CNNs for time series forecasting is that 

they can capture both local and global 

dependencies in the data. CNNs use a series 

of convolutional layers to extract features at 

different scales, which allows them to 

capture both short-term and long-term 

dependencies in the data. This can lead to 

more accurate predictions and better 

performance compared to RNNs. Another 

challenge is that CNNs can be 

computationally expensive to train, 

especially for large datasets. This can make 

it difficult to use CNNs for real-time 

forecasting or for applications that require 

frequent updates to the model [9], [10]. 

Objective  

In this study, we propose employing a 

temporal convolutional network (TCN) to 

forecast CPU usage and memory 

consumption within a cloud environment. 

TCN represents a neural network 

architecture utilizing dilated convolutions 

to capture temporal relationships within 

data. A defining trait of TCN is its capacity 

to maintain a fixed-sized receptive field 

irrespective of sequence length, enabling it 

to handle sequences of varying lengths 

while capturing long-term dependencies 

effectively. TCNs employ a 1D 

convolutional structure wherein each layer 

comprehends outputs from preceding 

layers. This is accomplished through the 

utilization of dilated convolutions, which 

exponentially expand the receptive field 

without increasing parameters or 

computational complexity. This study also 

has conducted comparisons with alternative 
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methods including Long Short-Term 

Memory (LSTM) Networks, Gated 

Recurrent Unit (GRU) Networks, and 

Multilayer Perceptron (MLP). 

Dataset 

The data used is from the Google Cluster 

Workload Traces of 2019. It includes 

variables that were derived by summing up 

the CPU and Memory usage of tasks within 

each job. These calculations were done at 

five-minute intervals over a full day (24 

hours). The dataset was narrowed down to 

the first ten days, focusing on CPU and 

memory utilization ranging from 5% to 

95%. This final dataset comprises two main 

variables: one representing CPU usage as a 

percentage and the other indicating 

Memory usage as a percentage. 

Methods  

Temporal Convolutional Network (TCN) 

Temporal Convolutional Networks (TCN) 

are a class of convolutional neural networks 

designed to handle sequential data. TCNs 

employ a series of 1D convolutions along 

the temporal dimension, allowing them to 

capture temporal dependencies in the input 

sequence [11]. The output of a TCN for a 

given time step depends on a fixed number 

of past inputs, determined by the receptive 

field size. The receptive field size can be 

increased by stacking multiple 

convolutional layers or using dilated 

convolutions. TCNs can be mathematically 

expressed as: 

𝒚𝒕 = ∑𝒇(𝒙𝒕−𝒊)

𝒌−𝟏

𝒊=𝟎

⋅ 𝒘𝒊 

where 𝒚𝒕 is the output at time step 𝑡, 𝑓(⋅) is 

the activation function, 𝑥𝑡−𝑖  is the input at 

time step 𝑡 − 𝑖, 𝑤_i are the learned weights, 

and 𝑘 is the size of the convolutional kernel. 

Long Short-Term Memory (LSTM) 

Networks 

Long Short-Term Memory (LSTM) 

Networks are a recurrent neural network 

(RNN) designed to address the vanishing 

gradient problem in traditional RNNs. 

LSTMs introduce a memory cell and three 

gating mechanisms: input gate, forget gate, 

and output gate [11], [12]. These gates 

regulate the flow of information into and 

out of the memory cell, allowing LSTMs to 

capture long-term dependencies in 

sequential data. The mathematical 

formulation of an LSTM cell can be 

expressed as: 

𝒊𝒕 = 𝛔(𝑾𝒊 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) 

𝒇𝒕 = 𝛔(𝑾𝒇 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) 

𝒐𝒕 = 𝛔(𝑾𝒐 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) 

𝑪�̃� = 𝐭𝐚𝐧𝐡(𝑾𝑪 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪) 

𝑪𝒕 = 𝒇𝒕⊙𝑪𝒕−𝟏 + 𝒊𝒕 ⊙𝑪�̃� 

𝒉𝒕 = 𝒐𝒕 ⊙ 𝐭𝐚𝐧𝐡(𝑪𝒕) 

where 𝑖𝑡 , 𝑓𝑡, and 𝑜𝑡 are the input, forget, and 

output gates, respectively; 𝐶𝑡 is the memory 

cell state; ℎ𝑡 is the hidden state; 𝑊 and 𝑏 

are learned weights and biases; σ is the 

sigmoid activation function; and ⊙ denotes 

element-wise multiplication. 

Gated Recurrent Unit (GRU) Networks 

Gated Recurrent Unit (GRU) Networks are 

a simplified variant of LSTMs, combining 

the forget and input gates into a single 

update gate and merging the cell state and 

hidden state [13], [14]. GRUs have fewer 
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parameters than LSTMs and can be 

computationally more efficient while still 

capturing long-term dependencies. The 

mathematical formulation of a GRU cell is 

given by: 

𝒛𝒕 = 𝛔(𝑾𝒛 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒛) 

𝒓𝒕 = 𝛔(𝑾𝒓 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒓) 

𝒉�̃� = 𝐭𝐚𝐧𝐡(𝑾𝒉 ⋅ [𝒓𝒕 ⊙𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒉) 

𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉𝒕−𝟏 + 𝒛𝒕 ⊙𝒉�̃� 

where 𝑧𝑡  is the update gate, 𝑟𝑡  is the reset 

gate, ℎ𝑡 is the hidden state, 𝑊 and 𝑏  are 

learned weights and biases, and ⊙ denotes 

element-wise multiplication. 

Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is a 

feedforward neural network consisting of 

multiple layers of interconnected nodes 

(neurons). Each neuron in an MLP applies 

a nonlinear activation function to a 

weighted sum of its inputs. MLPs are used 

for various tasks, such as classification and 

regression. The output of a single neuron in 

an MLP can be expressed as: 

𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏) 

where 𝑦 is the output of the neuron, 𝑓(⋅) is 

the activation function (e.g., sigmoid, 

ReLU),  

𝑥𝑖 are the inputs, 𝑤𝑖 are the learned weights, 

𝑏 is the bias term, and 𝑛 is the number of 

inputs. 

These neural network architectures have 

been widely used in various domains, 

including natural language processing, 

speech recognition, time series forecasting, 

and image classification, among others. The 

choice of architecture depends on the 

specific problem at hand and the 

characteristics of the input data. 

Results  

The results in table 1 present a comparative 

analysis of four different models - TCN, 

LSTM, GRU, and MLP - in predicting CPU 

usage in a cloud environment. Various 

performance metrics have been used to 

evaluate the models, including Mean 

Squared Error (MSE), Root Mean Squared 

Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error 

(MAPE), Forecast Bias, Forecast Accuracy 

Metrics (FA1, FA5, FA10), Theil's U 

Statistic, and Computational Efficiency. 

Figure 1. Error metrices in predicting CPU usage 

 

 

MSE measures the average squared 

difference between the predicted and actual 

values, with lower values indicating better 

performance. RMSE is the square root of 

MSE and provides an interpretable measure 

of the average prediction error in the same 

units as the original data. MAE calculates 

the average absolute difference between 
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predicted and actual values, giving equal 

weight to all errors. MAPE expresses the 

average absolute percentage difference 

between predicted and actual values, 

providing a relative measure of error. 

Among the models, TCN consistently 

achieves the lowest error values across 

MSE (0.05), RMSE (0.22), MAE (0.18), 

and MAPE (3.5%), followed by GRU, 

LSTM, and MLP. 

Figure 2. Forecasting bias in predicting CPU usage 

 

Forecast Bias measures the average 

difference between predicted and actual 

values, indicating whether the model tends 

to overestimate (positive bias) or 

underestimate (negative bias) the target 

variable. TCN and GRU exhibit slight 

positive biases of 0.02 and 0.03, 

respectively, while LSTM and MLP show 

negative biases of -0.04 and -0.06. These 

values suggest that TCN and GRU have a 

minor tendency to overestimate, while 

LSTM and MLP tend to underestimate the 

CPU usage. 

 

 

 

Figure 3. Efficiency metrices in predicting CPU usage 

 

Forecast Accuracy Metrics (FA1, FA5, 

FA10) represent the percentage of 

predictions falling within a specified 

percentage range of the actual values. For 

example, FA1 measures the percentage of 

predictions within 1% of the actual values. 

TCN demonstrates the highest accuracy 

across all three metrics, with FA1 = 85%, 

FA5 = 95%, and FA10 = 98%. LSTM and 

GRU follow closely, while MLP has the 

lowest accuracy scores. 

Theil's U Statistic compares the model's 

performance to a naïve forecasting method, 

with values less than 1 indicating that the 

model outperforms the naïve method. All 

four models have Theil's U Statistic values 

below 1, with TCN having the lowest value 

of 0.45, suggesting that it performs 

significantly better than a naïve forecast. 
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Table 1. Model results in predicting CPU usage in 

cloud environment 

Metric TCN LSTM GRU MLP 

Mean Squared 

Error (MSE) 

0.05 0.08 0.07 0.12 

Root Mean 

Squared Error 

(RMSE) 

0.22 0.28 0.26 0.35 

Mean Absolute 

Error (MAE) 

0.18 0.24 0.22 0.30 

Mean Absolute 

Percentage 

Error (MAPE) 

3.5% 4.8% 4.2% 6.0% 

Forecast Bias 0.02 -0.04 0.03 -0.06 

Forecast 

Accuracy (FA1, 

FA5, FA10) 

FA1 = 
85%,  

FA5 

= 
95%, 

FA10 

= 
98% 

FA1 = 
80%,  

FA5 = 

92%,  
FA10 

= 97% 

FA1 = 
82%,  

FA5 

= 
93%, 

FA10 

= 
97% 

FA1 
= 

75%,  

FA5 
= 

90%,  

FA10 
= 

95% 

Theil's U 

Statistic 

0.45 0.60 0.55 0.75 

Computational 

Efficiency 

    

Training Time 

(minutes) 

30 45 40 20 

Inference Time 

(ms per sample) 

2.5 3.5 3.0 1.5 

Memory Usage 

(GB) 

2.0 2.5 2.2 1.5 

Computational Efficiency is assessed 

through training time, inference time, and 

memory usage. MLP has the shortest 

training time (20 minutes) and lowest 

memory usage (1.5 GB), while LSTM has 

the longest training time (45 minutes) and 

highest memory usage (2.5 GB). TCN and 

GRU fall in between. Regarding inference 

time, MLP is the fastest (1.5 milliseconds 

per sample), followed by TCN (2.5 ms), 

GRU (3.0 ms), and LSTM (3.5 ms). 

TCN consistently outperforms the other 

models in terms of prediction accuracy, as 

evident from its lowest error metrics (MSE, 

RMSE, MAE, MAPE) and highest forecast 

accuracy scores (FA1, FA5, FA10). It also 

has the lowest Theil's U Statistic, indicating 

its superiority over naïve forecasting 

methods. However, TCN's computational 

efficiency lies between that of MLP (most 

efficient) and LSTM (least efficient). 

If prediction accuracy is the top priority and 

computational resources are not a major 

constraint, TCN would be the preferred 

choice. If computational efficiency is 

crucial and slightly lower accuracy is 

acceptable, MLP might be a better option. 

GRU and LSTM offer a balance between 

accuracy and efficiency, with GRU having 

a slight edge over LSTM. 

These results highlight the importance of 

considering multiple performance metrics 

when evaluating and selecting models for 

predicting CPU usage in a cloud 

environment. The insights gained from this 

analysis can guide decision-making and 

help optimize resource allocation and 

management in cloud computing systems. 

The results presented in table 2 compare the 

performance of four models - TCN, LSTM, 

GRU, and MLP - in predicting memory 

consumption in a cloud environment. The 

models are evaluated using various metrics, 

including error measures, forecast bias, 

forecast accuracy, Theil's U Statistic, and 

computational efficiency. 

The comparative analysis of TCN, LSTM, 

GRU, and MLP models in predicting 

memory consumption in a cloud 

environment yields valuable insights. By 

examining various performance metrics, we 

can gain a comprehensive understanding of 

each model's strengths and weaknesses. 

TCN stands out as the top performer in 

terms of prediction accuracy. It consistently 

achieves the lowest error values across 
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MSE (0.03), RMSE (0.17), MAE (0.12), 

and MAPE (2.8%). Moreover, TCN boasts 

the highest forecast accuracy scores, with 

FA1 = 90%, FA5 = 97%, and FA10 = 99%. 

These results demonstrate TCN's superior 

ability to capture the underlying patterns 

and dynamics of memory consumption 

data. 

Table 2. Model results in predicting memory 

consumption in cloud environment 

Metric TC

N 

LST

M 

GR

U 

ML

P 

Mean 

Squared 

Error (MSE) 

0.03 0.06 0.05 0.09 

Root Mean 

Squared 

Error 

(RMSE) 

0.17 0.24 0.22 0.30 

Mean 

Absolute 

Error (MAE) 

0.12 0.18 0.16 0.25 

Mean 

Absolute 

Percentage 

Error 

(MAPE) 

2.8% 4.2% 3.6% 5.5% 

Forecast Bias 0.01 -0.03 0.02 -0.05 

Forecast 

Accuracy 

(FA1, FA5, 

FA10) 

FA1 

= 

90%,  

FA5 

= 

97%,  

FA1

0 = 

99% 

FA1 = 

85%,  

FA5 = 

95%,  

FA10 

= 98% 

FA1 

= 

88%,  

FA5 

= 

96%,  

FA1

0 = 

98% 

FA1 

= 

80%,  

FA5 

= 

92%,  

FA1

0 = 

96% 

Theil's U 

Statistic 

0.40 0.55 0.50 0.70 

Computation

al Efficiency 

    

Training Time 

(minutes) 

25 40 35 15 

Inference 

Time (ms per 

sample) 

2.0 3.0 2.5 1.0 

Memory 

Usage (GB) 

1.8 2.2 2.0 1.2 

 

GRU follows closely behind TCN in 

accuracy, while LSTM and MLP exhibit 

higher error values and lower forecast 

accuracy scores. The Forecast Bias metric 

reveals that TCN and GRU have small 

positive biases, indicating a slight tendency 

to overestimate memory consumption. 

Conversely, LSTM and MLP show 

negative biases, suggesting a propensity to 

underestimate. 

Figure 4. error metrices in predicting memory consumption in cloud 

environment 

 

Theil's U Statistic further confirms the 

models' performance, with all values falling 

below 1. TCN has the lowest value (0.40), 

reinforcing its excellence in capturing the 

intricacies of memory consumption 

patterns compared to naïve forecasting 

methods. 

MLP boasts the shortest training time (15 

minutes), fastest inference speed (1.0 

milliseconds per sample), and lowest 

memory usage (1.2 GB). LSTM, on the 

other hand, has the longest training time (40 

minutes) and highest memory usage (2.2 

GB), while TCN and GRU fall in between. 
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If accuracy reigns supreme and 

computational resources are ample, TCN is 

the clear winner. If computational 

efficiency is a top priority and slightly 

lower accuracy is tolerable, MLP may be 

the preferred option. GRU presents a happy 

medium, balancing accuracy and 

efficiency, making it a solid choice when 

both factors are crucial. 

Figure 5. Forecasting bias in predicting memory consumption in 

cloud environment 

 

 

Figure 6. predicting memory consumption in cloud environment 

 

 

Conclusion  

The comparative analysis of TCN, LSTM, 

GRU, and MLP models in predicting 

memory consumption in a cloud 

environment provides valuable insights that 

can guide decision-making and optimize 

resource management. Evaluating these 

models across a range of performance 

metrics enables a comprehensive 

understanding of their strengths and 

weaknesses, facilitating the selection of the 

most appropriate model for specific use 

cases. 

TCN demonstrates superior performance in 

terms of prediction accuracy, consistently 

achieving the lowest error values and 

highest forecast accuracy scores. Its ability 

to capture the intricate patterns and 

dynamics of memory consumption data 

makes it an excellent choice when accuracy 

is the primary objective. However, it is 

essential to consider the computational 

resources available, as TCN's training time 

and memory usage fall in the middle of the 

range compared to the other models. 

MLP, in contrast, excels in computational 

efficiency, exhibiting the shortest training 

time, fastest inference speed, and lowest 

memory usage. This makes MLP a suitable 

option when computational resources are 

limited, or when the speed of predictions is 

of utmost importance. It is important to 

note, however, that MLP's accuracy is 

lower compared to TCN and GRU, 

indicating a potential trade-off between 

efficiency and precision. 

GRU offers a balance between accuracy 

and efficiency, making it a solid choice 
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when both factors are important. It closely 

follows TCN in terms of accuracy while 

maintaining reasonable computational 

efficiency. This balance can be particularly 

useful in scenarios where both prediction 

quality and resource management are key 

considerations. 

LSTM, while still a powerful model, 

exhibited higher error values and lower 

forecast accuracy scores compared to TCN 

and GRU. It also had the longest training 

time and highest memory usage, which may 

be a concern in resource-constrained 

environments. However, LSTM's ability to 

capture long-term dependencies in 

sequential data may still make it a valuable 

choice in certain applications. 

In addition to model selection, the insights 

from this analysis can also inform resource 

allocation and capacity planning strategies. 

Understanding the performance 

characteristics of each model allows cloud 

providers to optimize their infrastructure to 

support the chosen model effectively. This 

may involve provisioning adequate 

computational resources, implementing 

efficient data storage and retrieval 

mechanisms, and designing scalable 

architectures that can handle the demands 

of real-time predictions. 

The comparative analysis shows the 

importance of continuous monitoring and 

evaluation of predictive models in 

production environments. As workload 

patterns and resource demands change over 

time, regularly assessing the performance 

of the deployed models and making 

adjustments as needed is essential. This 

may involve retraining models with 

updated data, fine-tuning hyperparameters, 

or exploring alternative models that can 

better adapt to evolving requirements. 

Considering the trade-offs between 

accuracy and efficiency and selecting the 

most appropriate model for specific use 

cases enables organizations to optimize 

their cloud infrastructure, improve resource 

utilization, and deliver high-quality 

services to their users.  
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