
2023 (Applied Research in Artificial Intelligence and Cloud Computing)

Mitigating Cross-Site Request Forgery (CSRF) Attacks Using Reinforcement
Learning and Predictive Analytics

Shobhit Agrawal 1

Abstract

Cross-Site Request Forgery (CSRF) attacks pose a significant threat to web application security, allowing
attackers to perform unauthorized actions on behalf of authenticated users. Traditional CSRF mitigation
techniques, such as using secure tokens and validating request origins, have limitations in adapting to
attack patterns and optimizing security policies. This research explores the application of reinforcement
learning (RL) and predictive analytics to enhance CSRF mitigation strategies. We propose several RL-
based approaches, including CSRF token generation, CSRF detection, request validation, user behavior
analysis, and security policy optimization. In these approaches, RL agents are trained to generate secure
tokens, detect CSRF attacks, validate request authenticity, model user behavior, and optimize security poli-
cies based on observed attack patterns and system performance. The agents learn through simulated
attack scenarios, real-world web traffic data, and continuous feedback, adapting to new CSRF techniques
and balancing security effectiveness with user experience. Additionally, we investigate predictive analytics
techniques for CSRF mitigation, such as anomaly detection, risk scoring, user behavior analysis, predictive
token generation, and adaptive security policies. These techniques leverage machine learning algorithms
to identify anomalous requests, assign risk scores, classify user behavior, generate secure tokens, and
dynamically adjust security measures based on predicted risk levels. The research demonstrates the ap-
plications of RL and predictive analytics in enhancing CSRF mitigation strategies. These approaches offer
promising solutions to strengthen web application security by proactively detecting and preventing CSRF
attacks, adapting to attack patterns, and optimizing security policies. Further research is needed to validate
the practicality and scalability of these techniques in real-world deployments and to integrate them with
existing CSRF mitigation best practices. This research contributes to the field of web application security by
introducing innovative approaches that leverage RL and predictive analytics to mitigate CSRF attacks. The
proposed techniques may significantly improve the resilience of web applications against CSRF threats.

1. Introduction

Cross-Site Request Forgery (CSRF) is a type of web
application vulnerability that allows an attacker to
trick an authenticated user into executing unintended
actions on a targeted website. The attack exploits
the trust relationship between the user’s browser
and the web application, leveraging the fact that
the browser automatically includes the user’s ses-
sion cookie, IP address, and Windows domain cre-
dentials in most requests. This makes it difficult for
the web application to distinguish between legitimate
requests initiated by the user and forged requests
crafted by the attacker [1]. tabularx

CSRF attacks primarily focus on state-changing

1Sr. Software Engineer - Meta (Facebook)

requests, such as transferring funds, modifying ac-
count settings (e.g., changing the email address or
password), making purchases, or performing admin-
istrative actions. The attacker’s goal is to manip-
ulate the victim into unknowingly submitting these
malicious requests while they are authenticated on
the targeted website [2]. Since the response to the
forged request is not visible to the attacker, they rely
on the successful execution of the desired action
without direct feedback [3].

The impact of CSRF attacks varies depending on
the privileges of the compromised user account. If
the victim is a regular user, the attacker may be able
to perform unauthorized actions within the scope of
the user’s permissions [4].If the victim has adminis-
trative privileges, the attacker could potentially com-

https://researchberg.com/index.php/araic/index
https://orcid.org/0009-0000-4957-5575

Table 1: Common CSRF Vulnerabilities

Vulnerability Details
Unrestricted authenti-
cation

Allows unauthorized access to user accounts.

Insufficient session ex-
piration

Enables reuse of old session credentials for unauthorized access.

Critical state data Enables modification of server-side state data for unauthorized actions.
Malicious user-
generated content

Injection of CSRF payloads into user-generated content.

Insecure script restric-
tions

Allows injection of malicious code via scripts.

Weak file upload re-
strictions

Allows upload of malicious files, compromising user sessions.

Predictable URL struc-
tures

Enables crafting of malicious links for unauthorized actions.

XSS vulnerability Exploited to steal CSRF tokens directly, bypassing CSRF protection.

Figure 1: Impact of CSRF Attacks Based on User Privileges

promise the entire web application, leading to severe
consequences [5].

A specific variant of CSRF attacks is known as
”Stored CSRF flaws.” In this scenario, the malicious
request is stored on the vulnerable website itself,
typically in a form of user-generated content, such
as comments or profiles. When other users view
the affected page, their browsers automatically ex-
ecute the stored CSRF payload, triggering the unin-
tended actions on their behalf. Stored CSRF flaws
can have a wider impact as they can affect multiple
users without requiring individualized targeting. At-
tackers can exploit various vulnerabilities to conduct
Cross-Site Request Forgery (CSRF) attacks, com-
promising the security of web applications and user
data. One such vulnerability is the unrestricted au-
thentication area weakness, which allows attackers
to gain unauthorized access to logged-in user ac-

Figure 2: CSRF Attacks and State-Changing Requests

counts. This vulnerability arises when the web ap-
plication fails to properly enforce authentication and
authorization controls, enabling attackers to bypass
security measures and access sensitive user infor-
mation or perform actions on behalf of the compro-
mised users [6].

Another vulnerability that attackers can leverage
is the insufficient session expiration weakness. This
occurs when the web application does not ade-
quately manage session timeouts or invalidate ses-
sion credentials after a certain period of inactivity.
Attackers can exploit this weakness by reusing old
session credentials or session IDs to gain unautho-
rized access to user accounts, even after the original
user has logged out or their session has expired.

The critical state data vulnerability is another
weakness that attackers can exploit in CSRF attacks.
This vulnerability allows attackers to modify the state

2

information of the target website without being de-
tected. State information refers to data that is stored
on the server and used to maintain the current state
of the application, such as user preferences, shop-
ping cart contents, or form data. If the web applica-
tion does not properly validate and protect this state
information, attackers can manipulate it to perform
unintended actions or access sensitive data [7].

Some web servers allow users to create and cus-
tomize their own content, such as personal pages or
profiles. While this feature enhances user engage-
ment, it also provides attackers with an opportunity
to conduct CSRF attacks. Attackers can create ma-
licious content that includes CSRF payloads, which
can trigger unauthorized actions when viewed or in-
teracted with by other users. This vulnerability arises
when the web application fails to properly sanitize
and validate user-generated content.

Incorrect security restrictions on scripts can also
lead to CSRF vulnerabilities. If the web applica-
tion does not enforce strict controls on script exe-
cution or allows users to upload and run arbitrary
scripts, attackers can abuse this weakness to inject
malicious code. For example, attackers can upload
CSRF worms, which are self-propagating scripts that
spread across the web application, performing unau-
thorized actions on behalf of the infected users [7].

Inadequate restrictions on file uploads can also
contribute to CSRF vulnerabilities. If the web appli-
cation allows users to upload attachments without
proper validation and sanitization, attackers can ex-
ploit this weakness by uploading malicious HTML or
JavaScript files. When other users access these ma-
licious attachments, the attacker’s code can execute
in their browsers, potentially stealing user cookies,
performing restricted actions, or compromising the
user’s session [5] [8].

Web applications with highly predictable URL
structures can be vulnerable to CSRF attacks. If the
URLs used by the application follow a predictable
pattern and include sensitive information, such as
session tokens or user identifiers, attackers can craft
malicious links that mimic legitimate requests. By
tricking users into clicking on these links or embed-
ding them in malicious web pages, attackers can ini-
tiate unauthorized actions on behalf of the victim,
leveraging the predictable URL structure to bypass
security measures.

If the website is also vulnerable to Cross-Site
Scripting (XSS) attacks, the attacker can leverage

this vulnerability to steal CSRF tokens directly. XSS
allows the attacker to inject malicious scripts into
the website, which can be executed in the user’s
browser. These scripts can access and exfiltrate
sensitive information, including CSRF tokens, en-
abling the attacker to bypass the CSRF protection.

Unexpired cookies provide a convenient and
stealthy means for attackers to exploit session fix-
ation vulnerabilities. By capturing these cookies,
the attacker can gain control over the user’s ses-
sion. This can be achieved through various meth-
ods, such as passive network eavesdropping to in-
tercept cookie values, brute-forcing session IDs if
they have low entropy, or even converting HTTP
POST requests to GET requests to bypass the web-
site’s security measures.

A typical CSRF attack involves multiple partici-
pants: the targeted user, a trusted website, a ma-
licious website, and the attacker. The attack is ini-
tiated when the targeted user interacts with a mali-
cious entity, such as a crafted email, website, blog
post, instant message, or program. This interaction
triggers the user’s web browser to perform an unin-
tended action on a trusted website where the user is
already authenticated.

CSRF attacks exploit the fact that browser re-
quests automatically include credentials associated
with the target site, such as the user’s session cookie
and IP address. The website relies on these cre-
dentials to authenticate and authorize the user’s ac-
tions. However, due to the inclusion of these cre-
dentials in forged requests, the website cannot dif-
ferentiate between legitimate requests initiated by
the user and malicious requests crafted by the at-
tacker. In a Cross-Site Request Forgery (CSRF) at-
tack, the attacker’s primary objective is to expose the
targeted user to malicious code that will trigger unau-
thorized actions on a trusted website. There are sev-
eral methods an attacker can employ to deliver the
malicious payload to the user.

One common approach is to trick the user into
visiting a malicious website controlled by the at-
tacker. This can be achieved through various social
engineering techniques, such as sending deceptive
emails or messages that entice the user to click on
a link leading to the attacker’s site. Once the user
visits the malicious website, the attacker’s code is
executed in the user’s browser, potentially triggering
the CSRF attack.

Another method involves distributing the attack

3

payload through social networking applications or
email. Attackers can exploit the trust users have in
these platforms to share malicious links or embed
the CSRF code within seemingly harmless content.
When users interact with the shared content, such
as clicking on a link or viewing an image, the CSRF
attack is initiated without their knowledge or consent.

Most websites today rely on cookies to identify au-
thenticated users and maintain their logged-in state.
When a user successfully authenticates themselves
on a website, they are typically assigned an iden-
tity login cookie. This cookie is stored in the user’s
browser and is automatically included in subsequent
requests to the website. As long as the user does
not close the browser or explicitly log out, the cookie
remains valid, allowing the user to access the web-
site without re-authenticating.

Attackers can exploit this window of opportunity
to make the user’s browser perform actions without
their consent. With crafting malicious requests that
include the user’s valid identity login cookie, the at-
tacker can impersonate the user and perform unau-
thorized actions on their behalf. The website re-
ceiving these requests assumes they are legitimate
since they contain the user’s authenticated session
information.

2. Reinforcement Learning (RL) in Mitigating
Cross-Site Request Forgery Attacks

2.1 RL-based CSRF Token Generation

Reinforcement Learning (RL) can be useful for
generating secure and robust Cross-Site Request
Forgery (CSRF) tokens. An intelligent agent can be
developed to learn and adapt its token generation
strategy based on CSRF attacks. The primary objec-
tive of the RL-based CSRF token generation agent is
to maximize the difficulty for an attacker to guess or
predict the generated tokens for enhancing the over-
all security of web applications.

The RL agent’s reward function roles in guiding
its learning process. To effectively generate secure
CSRF tokens, the reward function can be designed
based on various metrics that quantify the strength
and resilience of the generated tokens. These met-
rics may include token entropy, which measures the
randomness and unpredictability of the tokens, en-
suring that they are not easily guessable by attack-
ers. The reward function can incorporate measures
of token uniqueness, guaranteeing that each gener-
ated token is distinct and cannot be reused across

Figure 3: Reinforcement Learning (RL) Agent-Environment Inter-
action

different sessions or requests. The agent can be in-
centivized to generate tokens that are resistant to
common CSRF attack techniques, such as token
prediction algorithms or brute-force attacks.

To train the RL-based CSRF token generation
agent, a training environment can be constructed.
This environment should simulate various CSRF at-
tack scenarios, exposing the agent to a wide range of
potential threats and vulnerabilities. The agent can
learn and adapt its token generation strategy based
on the feedback it receives by interacting with this
simulated environment. The training process can
leverage real-world web traffic data to further en-
hance the agent’s understanding of realistic CSRF
attack patterns and user behaviors. By continu-
ously learning from both simulated and real-world
data, the RL agent can develop a robust and adap-
tive token generation mechanism that effectively mit-
igates CSRF risks in dynamic web application envi-
ronments.

2.2 RL-based CSRF Detection

RL Agent can learn to identify patterns and anoma-
lies that are indicative of CSRF attacks by training
an RL agent to analyze web requests in real-time.
The agent’s decision-making process is guided by a
reward function, which incentivizes the agent to ac-
curately detect CSRF attacks while minimizing false
positives. Through continuous interaction with the
environment and feedback on its actions, the RL
agent can adapt and improve its detection capabil-
ities over time.

The training process of the RL-based CSRF de-
tection system involves exposing the agent to a di-
verse set of web requests, both legitimate and mali-
cious. The agent observes the features and char-

4

Algorithm 1 RL-based CSRF Token Generation

Initialize RL agent with policy πθ

Initialize state space S and action space A
Define reward function R(s, a) based on token secu-
rity metrics

for each training iteration do

Initialize state s0 ∈ S
for each step t in episode do

Select action at ∼ πθ(st)

Generate CSRF token τt based on at

Evaluate token security metrics:

• Entropy: H(τt) = −
∑n

i=1 pi log2 pi

• Uniqueness: U(τt) =
|τ1,τ2,...,τt|

t

• Resistance to attacks: Ra(τt) ∈ [0, 1]

Compute reward rt = R(st, at) based on met-
rics

Observe next state st+1

Store transition (st, at, rt, st+1) in replay bufferD
end for

Sample a batch of transitions (si, ai, ri, si+1) from
D

Update policy πθ using policy gradient:

∇θJ(θ) = Es ∼ D, a ∼ πθ [∇θ log πθ(a|s)Qπ(s, a)]

Estimate Q-value function Qπ(s, a) using temporal
difference learning

end for

acteristics of each request, such as the presence
of CSRF tokens, the origin of the request, and the
structure of the request payload. Based on these
observations, the agent takes actions to classify the
request as either benign or a potential CSRF at-
tack. The reward function provides feedback to
the agent based on the correctness of its classifi-
cations, encouraging it to make accurate decisions.
Through iterative training episodes, the agent refines
its decision-making strategy to optimize its perfor-
mance in detecting CSRF attacks.

As attackers develop new methods to bypass tra-
ditional CSRF defenses, the RL agent can learn and
adapt to these changes through ongoing training and
feedback. The agent can stay ahead of the curve
in detecting novel CSRF attack patterns by con-
stantly updating its knowledge based on real-world
data and expert feedback. The RL approach al-
lows for the incorporation of domain-specific knowl-
edge and heuristics into the reward function, en-
abling the agent to make informed decisions based
on the unique characteristics of the web application
being protected. With its adaptability and continu-
ous learning capabilities, RL-based CSRF detection
gives a robust and dynamic solution to safeguard
web applications against CSRF attacks.

2.3 RL-based Request Validation

Reinforcement Learning (RL) can also be used for
validating the authenticity and integrity of incoming
web requests. This can lead to enhancing the secu-
rity of web applications against Cross-Site Request
Forgery (CSRF) attacks. Creating a dynamic and
adaptive defense mechanism becomes possible by
developing an RL agent that actively learns to an-
alyze and validate web requests. The agent can
be trained to examine various aspects of a request,
such as the request parameters, headers, and con-
textual information, to determine its legitimacy.

The core component of the RL-based request val-
idation system is the reward function. This function
is carefully designed to incentivize the agent to cor-
rectly identify and block CSRF attempts while allow-
ing legitimate requests to pass through. The reward
function assigns positive rewards for accurately de-
tecting and preventing CSRF attacks, and negative
rewards for false positives or false negatives. The
agent learns to make informed decisions about the
legitimacy of each incoming request by optimizing its
actions based on the received rewards.

To train the RL agent effectively, a diverse dataset

5

Algorithm 2 RL-based CSRF Detection

Initialize RL agent with policy πθ, value function Vϕ,
and reward function R

for each web request wt do

Extract features ft from wt

at ← πθ(ft) {Agent selects action based on pol-
icy}

if at is classified as CSRF attack then

Block the request wt

rt ← R(at, wt) {Reward for correctly identifying
CSRF attack}

else

Allow the request wt

rt ← R(at, wt) {Reward for correctly allowing
legitimate request}

end if

Store transition (ft, at, rt, ft+1) in replay buffer D

Sample a batch of transitions (fi, ai, ri, fi+1) from
D

Compute target values yi using Bellman equation:

yi = ri + γVϕ(fi+1)

Update value function Vϕ by minimizing loss:

L(ϕ) = 1
N

∑N
i=1(yi − Vϕ(fi))

2

Update policy πθ using policy gradient:

∇θJ(θ) =
1
N

∑N
i=1∇θ log πθ(ai|fi)(yi − Vϕ(fi))

end for

consisting of both labeled CSRF attack samples and
normal web traffic data is essential. The labeled
CSRF attack samples serve as explicit examples of
malicious requests, allowing the agent to learn the
distinguishing characteristics of CSRF attempts. On
the other hand, the normal web traffic data helps
the agent understand the patterns and behaviors
of legitimate requests. Exposing the agent to a
wide range of scenarios during training can help it
develop a robust and generalized understanding of
what constitutes a valid request. Through iterative
training episodes and continuous feedback from the
reward function, the RL agent refines its decision-
making process, becoming increasingly effective at
identifying and blocking CSRF attempts in real-time.
As a result, the RL-based request validation system
provides a proactive and adaptive layer of defense
against CSRF attacks.

2.4 RL-based User Behavior Analysis

RL-based User Behavior Analysis involves training
a reinforcement learning (RL) agent to comprehend
and emulate typical user behavior patterns within a
web application. Through iterative interactions with
the environment, the RL agent learns to identify and
model the sequential actions and decision-making
processes inherent to regular user activities. The
agent constructs a representation of normal behav-
ior, enabling it to differentiate between benign user
actions and potentially malicious ones, by analyzing
various features such as user interactions, session
duration, and navigation paths.

The RL agent’s primary objective is to detect de-
viations from anticipated user behavior that could
signify Cross-Site Request Forgery (CSRF) attacks.
To accomplish this, the agent is equipped with a
reward function designed to optimize the accuracy
of anomaly detection while minimizing false alarms.
The RL algorithm iteratively refines its detection ca-
pabilities, enhancing its ability to discern subtle de-
viations indicative of CSRF attacks, by assigning
rewards based on the agent’s ability to accurately
identify anomalous behavior and avoid unnecessary
alerts.

The RL-based approach offers the advantage of
adaptability to user behavior patterns and CSRF at-
tack techniques. As users interact with the web ap-
plication and attackers devise new methods to ex-
ploit vulnerabilities, the RL agent continuously learns
from experience, updating its internal model to re-
flect the latest trends and strategies. This adaptive
nature ensures that the behavior analysis system re-

6

Algorithm 3 RL-based Request Validation

Initialize RL agent with policy πθ

Initialize state space S and action space A
Define reward function R(s, a) based on request val-
idation metrics

for each training iteration do

Initialize state s0 ∈ S
for each step t in episode do

Receive incoming web request rt
Extract request features:

• Request parameters: Pt = p1, p2, . . . , pn

• Headers: Ht = h1, h2, . . . , hm

• Contextual information: Ct = c1, c2, . . . , ck

Construct state representation st =
f(Pt, Ht, Ct)

Select action at ∼ πθ(st), where at ∈ 0, 1

Validate request based on at:

• If at = 1, allow the request

• If at = 0, block the request

Observe feedback ft (e.g., user reports, manual
review)

Compute reward rt = R(st, at, ft) based on val-
idation metrics

Store transition (st, at, rt, st+1) in replay bufferD
end for

Sample a batch of transitions (si, ai, ri, si+1) from
D

Update policy πθ using policy gradient:

∇θJ(θ) = Es ∼ D, a ∼ πθ [∇θ log πθ(a|s)Qπ(s, a)]

Estimate Q-value function Qπ(s, a) using temporal
difference learning:

Qπ(st, at)← Qπ(st, at)+α [rt + γV π(st+1)−Qπ(st, at)]

where V π(st+1) = maxa′ Qπ(st+1, a
′)

end for

Figure 4: Reinforcement Learning (RL) for CSRF Detection and
Mitigation

mains effective in detecting CSRF attacks even in
dynamic environments, thereby enhancing the over-
all security posture of the web application.

2.5 RL-based Security Policy Optimization

Reinforcement Learning (RL) is a powerful machine
learning paradigm that enables an agent to learn op-
timal decision-making strategies through interaction
with an environment. In the context of CSRF pre-
vention, an RL agent can be designed to optimize
security policies and configurations dynamically.

The RL agent operates within a Markov Decision
Process (MDP) framework, where the state space
represents the current security settings and CSRF
attack patterns, and the action space encompasses
possible adjustments to security policies. The agent
learns to make decisions based on the observed
state and receives rewards or penalties based on
the effectiveness of its actions in preventing CSRF
attacks and maintaining system performance.

To optimize CSRF prevention policies, the RL
agent can use various techniques such as Q-
learning or policy gradient methods. The agent it-
eratively updates its policy based on the received re-
wards, gradually learning to make better decisions
over time. The reward function is carefully designed
to capture the desired balance between security and
usability. For example, the agent can receive pos-
itive rewards for successfully detecting and mitigat-
ing CSRF attacks while minimizing false positives,
and negative rewards for allowing attacks or causing
excessive user friction.

The RL agent can continuously monitor and adapt
to changing CSRF attack patterns by incorporating
real-time feedback from the environment. It can ad-
just security settings such as session timeouts, to-
ken expiration times, and request validation rules
based on the observed patterns. For instance, if
the agent detects an increase in CSRF attempts tar-
geting a specific vulnerability, it can automatically
tighten the corresponding security measures to miti-

7

Algorithm 4 RL-based CSRF Detection

procedure CSRF DETECTION

Initialize RL agent with policy πθ, value function
Vϕ, and reward function R

while true do

Receive web request wt

Extract features ft from wt

Select action at ← πθ(ft)

if at is classified as CSRF attack then

Block the request wt

rt ← R(at, wt) {Reward for blocking CSRF
attack}

else

Allow the request wt

rt ← R(at, wt) {Reward for allowing legiti-
mate request}

end if

Store transition (ft, at, rt, ft+1) in replay buffer
D

end while

end procedure

procedure TRAIN AGENT

while not converged do

Sample a batch of transitions (fi, ai, ri, fi+1)
from D

Compute target values yi using Bellman equa-
tion:

yi = ri + γVϕ(fi+1)

Update value function Vϕ by minimizing loss:

L(ϕ) = 1
N

∑N
i=1

(
yi − Vϕ(fi)

)2
Update policy πθ using policy gradient:

∇θJ(θ) = 1
N

∑N
i=1∇θ log πθ(ai | fi)

(
yi −

Vϕ(fi)
)

end while

end procedure

gate the risk.

To ensure effective learning, the RL agent requires
a well-defined state representation that captures rel-
evant information about the CSRF attack and sys-
tem performance. This may include features such
as the frequency and characteristics of CSRF at-
tempts, the success rate of mitigation techniques,
and metrics related to user experience. The agent
can utilize deep learning architectures, such as deep
Q-networks (DQNs) or actor-critic models, to handle
complex state spaces and learn patterns.

Security systems can achieve adaptive and intel-
ligent CSRF prevention, dynamically adjusting se-
curity policies based on real-time observations and
learned patterns, by using RL techniques. This ap-
proach enables a more proactive and resilient de-
fense against CSRF threats while optimizing the bal-
ance between security and usability.

3. Predictive Analytics in Mitigating Cross-Site
Request Forgery Attacks

3.1 Anomaly Detection

Anomaly detection involves the development of pre-
dictive models that discern normal user behavior
patterns and subsequently identify anomalies or
deviations from these established norms. These
anomalies encompass a range of irregularities, in-
cluding unexpected request origins, suspicious pa-
rameter values, or atypical sequences of requests
within a system. Employing machine learning tech-
niques such as clustering, one-class Support Vector
Machines (SVM), or autoencoders, anomaly detec-
tion algorithms aim to pinpoint anomalous requests
that potentially signify Cross-Site Request Forgery
(CSRF) attempts. By leveraging historical web traf-
fic data, these models can be trained to recognize
patterns associated with legitimate user interactions
and continuously updated with new data to adapt to
strategies employed by attackers in CSRF attacks.

The utilization of clustering algorithms allows
anomaly detection systems to categorize incoming
requests into clusters based on their similarity to es-
tablished patterns of normal behavior. Conversely,
one-class SVMs focus on delineating a boundary
that encapsulates the majority of normal requests
while identifying outliers that fall outside this bound-
ary as potential anomalies. Autoencoders, on the
other hand, operate by compressing input data into
a latent space representation and then reconstruct-
ing it, wherein anomalies are identified based on the

8

Algorithm 5 RL-based Security Policy Optimization
for CSRF Prevention

Initialize security policy parameters θ

Initialize Q-function Qϕ(s, a) with random weights ϕ

Initialize replay buffer D
for episode = 1,M do

Initialize state s0

for t = 0, T − 1 do

Select action at based on ϵ-greedy policy:

at =

{
argmaxa Qϕ(st, a) with probability 1− ϵ

random action with probability ϵ

Execute action at and observe reward rt and
next state st+1

Store transition (st, at, rt, st+1) in D
Sample a mini-batch of transitions (s, a, r, s′)

from D
Compute target values:

y =

{
r if s′ is terminal
r + γmaxa′ Qϕ(s

′, a′) otherwise

Perform gradient descent on (y−Qϕ(s, a))
2 with

respect to ϕ

Update security policy parameters θ based on
Qϕ(s, a)

st ← st+1

end for

end for

Figure 5: Types of Anomalies in Web Application Requests

degree of reconstruction error.

It is important to regular training of models on
fresh data to capture patterns indicative of CSRF
attempts and to fine-tune model parameters for im-
proved accuracy. Integrating anomaly detection
mechanisms within a cybersecurity framework en-
ables proactive identification and mitigation of po-
tential security breaches, thereby bolstering the re-
silience of web applications against CSRF exploits.
Anomaly detection serves as a crucial line of de-
fense in safeguarding digital assets and preserving
the integrity of online ecosystems by using histori-
cal data insights and the power of machine learning
algorithms.

3.2 Risk Scoring

Risk scoring mechanisms are components of cyber-
security frameworks aimed at assessing the poten-
tial threat posed by incoming web requests and fa-
cilitating timely mitigation strategies. These predic-
tive models are designed to assign risk scores to
each request, drawing upon a diverse array of factors
including the request’s origin, user behavior, ses-
sion attributes, and content. A higher risk score de-
notes an elevated probability of the request being
indicative of a Cross-Site Request Forgery (CSRF)
attempt necessitating heightened vigilance and re-
sponse measures. Applying machine learning algo-
rithms such as logistic regression, decision trees, or
random forests, these risk scoring models are ca-
pable of discerning complex patterns within the data
and quantifying the likelihood of malicious intent as-
sociated with individual requests.

The application of logistic regression, decision
trees, and random forests facilitates the construc-
tion of robust risk scoring models capable of effec-
tively evaluating the risk profile of incoming web re-
quests. Logistic regression is adept at modeling
the probability of binary outcomes, making it well-
suited for predicting the likelihood of CSRF attempts
based on input features. Decision trees offer inter-
pretability and the ability to capture complex decision

9

Algorithm 6 Anomaly Detection for CSRF Preven-
tion

procedure ANOMALYDETECTION(requests)

model← TrainModel(historicalData)

for request in requests do

features← ExtractFeatures(request)

if model.isAnomaly(features) then

BlockRequest(request)

else

ProcessRequest(request)

end if

model.update(features)

end for

end procedure

procedure TRAINMODEL(historicalData)

model← InitializeModel()

for data in historicalData do

model.train(ExtractFeatures(data))

end for

return model

end procedure

procedure EXTRACTFEATURES(request)

return [request.origin,
request.parameters,
request.sequence]

end procedure

boundaries, enabling the identification of nuanced
patterns indicative of suspicious behavior. Mean-
while, random forests leverage ensemble learning
techniques to aggregate the predictions of multiple
decision trees, enhancing predictive accuracy and
resilience against overfitting. Organizations can de-
velop sophisticated risk scoring mechanisms capa-
ble of accurately assessing the threat level posed by
incoming requests and guiding subsequent security
responses by using the capabilities of these machine
learning algorithms.

In practice, the risk scores generated by these
models serve as actionable insights that inform
the implementation of additional security measures
tailored to the perceived threat level. Requests
deemed to pose a high risk, as indicated by elevated
risk scores, can trigger supplementary validation or
authentication procedures to mitigate the potential
impact of CSRF attacks. Organizations can optimize
resource allocation and fortify their defenses against
CSRF exploits by dynamically adjusting the strin-
gency of security measures based on risk scores.
The integration of risk scoring mechanisms within
broader cybersecurity frameworks enhances the re-
silience of web applications by enabling proactive
threat detection and response, thereby bolstering
overall cybersecurity posture in the face of cyber
threats.

3.3 User Behavior Analysis

User behavior analysis represents an aspect of cy-
bersecurity strategies in detecting and mitigating
Cross-Site Request Forgery (CSRF) attacks. Or-
ganizations can gain insights into the typical pat-
terns of user interactions within a web application
and identify deviations that may signify potential se-
curity threats by leveraging predictive analytics. This
entails constructing user profiles derived from histor-
ical data encompassing various metrics such as re-
quest patterns, session durations, and frequently ac-
cessed resources. These profiles serve as a founda-
tion for establishing baseline behavior against which
anomalous activities can be detected.

To discern anomalous behavior indicative of CSRF
attacks, predictive models are trained to recognize
deviations from established user behavior patterns.
Supervised learning algorithms, such as support
vector machines (SVM) or neural networks, are em-
ployed to classify user behavior as either normal or
potentially malicious based on input features derived
from historical data. SVMs excel at delineating deci-
sion boundaries in high-dimensional feature spaces,

10

Algorithm 7 Risk Scoring for CSRF Prevention

procedure RISKSCORING(requests)

model← TrainModel(historicalData)

for request in requests do

features← ExtractFeatures(request)

riskScore← model.predict(features)

if riskScore > threshold then

EnhancedV alidation(request)

else

ProcessRequest(request)

end if

end for

end procedure

procedure TRAINMODEL(historicalData)

model← InitializeModel()

for data in historicalData do

features← ExtractFeatures(data)

label← GetLabel(data)

model.train(features, label)

end for

return model

end procedure

procedure EXTRACTFEATURES(request)

return [request.origin, request.userBehavior,
request.sessionCharacteristics, request.content]

end procedure

making them well-suited for distinguishing between
benign and suspicious user activities. Similarly, neu-
ral networks offer the capacity to capture nonlinear
relationships within the data, thereby enhancing the
model’s ability to discern subtle deviations that may
evade traditional detection methods.

Sudden changes in request frequency, unusual re-
quest sequences, or anomalous session behaviors
can serve as red flags prompting further investiga-
tion and response measures. Organizations can en-
hance their ability to accurately differentiate between
legitimate user interactions and potentially harmful
activities by continually refining predictive models
through the incorporation of new data and adapting
to attack strategies. User behavior analysis serves
as a tool in the resilience of web applications against
CSRF exploits for enabling organizations to safe-
guard sensitive data and uphold the integrity of their
digital ecosystems.

3.4 Predictive Token Generation

This technique entails the creation of CSRF tokens
that exhibit a high degree of unpredictability, thereby
thwarting attempts by attackers to guess or com-
promise these tokens. Organizations can develop
predictive models capable of generating tokens that
are statistically improbable to be exploited by an-
alyzing historical token usage patterns. Machine
learning algorithms, such as recurrent neural net-
works (RNNs) and long short-term memory (LSTM)
networks, emerge as potent tools in this endeavor,
enabling the extraction of intricate token generation
patterns and the synthesis of robust, cryptographi-
cally secure tokens.

RNNs and LSTM networks, renowned for their
adeptness in capturing temporal dependencies
within sequential data, are useful in the generation
of CSRF tokens that resist brute-force attacks and
token prediction techniques. Through iterative learn-
ing processes, these algorithms assimilate historical
token usage data and discern subtle patterns that
inform the creation of tokens possessing a height-
ened level of unpredictability. Predictive token gen-
eration mechanisms yield tokens that exhibit a level
of entropy sufficient to thwart adversarial attempts at
exploitation by leveraging the inherent complexity of
token generation patterns, thereby bolstering the re-
silience of CSRF token-based defenses.

The adoption of predictive token generation rep-
resents a proactive stance in enhancing the secu-
rity posture of web applications against CSRF at-

11

Algorithm 8 User Behavior Analysis for CSRF Pre-
vention

procedure USERBEHAVIORANALYSIS(requests)

userProfiles← BuildUserProfiles(historicalData)

for request in requests do

user ← GetUser(request)

if IsDeviationFromExpectedBehavior
(request, userProfiles[user]) then

FlagAsCSRF (request)

BlockRequest(request)

else

ProcessRequest(request)

end if

UpdateUserProfile(userProfiles[user], request)

end for

end procedure

procedure BUILDUSERPROFILES(historicalData)

userProfiles←
for data in historicalData do

user ← GetUser(data)

if user not in userProfiles then

userProfiles[user] ←
InitializeUserProfile()

end if

UpdateUserProfile(userProfiles[user], data)

end for

return userProfiles

end procedure

function ISDEVIATIONFROMEXPECTEDBEHAV-
IOR(request, userProfile)

if ClassifyBehavior(request, userProfile) =
Malicious then

return True

else

return False

end if

end function

procedure UPDATEUSERPRO-
FILE(userProfile, request)

userProfile.requestPatterns.append(request)

userProfile.sessionDuration
.append(request.sessionDuration)

userProfile.accessedResources.
append(request.resource)

end procedure

tacks. Organizations can significantly mitigate the
risk of unauthorized requests and safeguard sensi-
tive user data by generating tokens that are statisti-
cally improbable to be compromised. The integration
of machine learning-driven predictive analytics em-
powers organizations to adaptively respond to threat
and continually refine token generation strategies to
counter attack methodologies.

Algorithm 9 Predictive Token Generation for CSRF
Prevention

procedure GENERATECSRFTOKEN(request)

model← LoadTrainedModel()

context← GetTokenGenerationContext(request)

token← model.generateToken(context)

return token

end procedure

procedure TRAINTOKENGENERATION-
MODEL(historicalTokenData)

model← InitializeModel()

X, y ← PreprocessData(historicalTokenData)

model.train(X, y)

SaveTrainedModel(model)

end procedure

procedure PREPROCESS-
DATA(historicalTokenData)

X ← []

y ← []

for tokenData in historicalTokenData do

context← GetTokenGenerationContext
(tokenData)

token← GetToken(tokenData)

X.append(context)

y.append(token)

end for

return X, y

end procedure

procedure GETTOKENGENERATIONCON-
TEXT(request)

return [request.user, request.timestamp,
request.sessionID]

end procedure

12

3.5 Adaptive Security Policies

In this approach, organizations create CSRF tokens
with a high degree of unpredictability, thwarting at-
tackers’ attempts to guess or compromise them.
Predictive models are developed to generate statis-
tically improbable-to-exploit tokens by analyzing his-
torical token usage patterns. Machine learning al-
gorithms like recurrent neural networks (RNNs) and
long short-term memory (LSTM) networks are use-
ful in extracting intricate token generation patterns
and synthesizing robust, cryptographically secure to-
kens.

RNNs and LSTM networks, renowned for their
adeptness in capturing temporal dependencies
within sequential datacan be used in the generation
of CSRF tokens that resist brute-force attacks and
token prediction techniques. These algorithms learn
from past token usage data and identify patterns that
help create highly unpredictable tokens. The token
generation patterns are used to produce tokens with
a high level of randomness. This randomness makes
it extremely difficult for attackers to guess or exploit
the tokens, thus strengthening the security provided
by CSRF token-based protection mechanisms.

4. Conclusions

Reinforcement Learning offers promising for en-
hancing CSRF mitigation strategies. One approach
is to develop an RL agent that learns to generate
highly secure and unpredictable CSRF tokens. The
system could adaptively create tokens that are ex-
tremely difficult for attackers to guess or predict by
training the agent through simulated attack scenar-
ios and real web traffic data. The reward function
would be based on metrics like token entropy and
resistance to common CSRF techniques. Another
avenue is using RL for real-time CSRF attack detec-
tion, where an agent is trained to spot telltale pat-
terns and anomalies indicative of CSRF attempts.
Through continuous learning and feedback, such a
system could evolve to keep pace with the ever-
changing landscape of CSRF attack methods.

Beyond RL, predictive analytics can also be used
in the fight against CSRF. Anomaly detection mod-
els can be built to learn normal user behavior pat-
terns within a web application, and flag deviations
that may signify CSRF attacks. Through training on
historical data and perpetual updates with new in-
formation, these models can stay one step ahead
of emerging threats. Risk scoring is another pre-
dictive approach, assigning scores to incoming re-

Algorithm 10 Adaptive Security Policies for CSRF
Prevention

procedure PROCESSREQUEST(request)

riskLevel← PredictRiskLevel(request)

ApplySecurityPolicy(request, riskLevel)

if IsRequestV alid(request) then

ProcessRequest(request)

else

BlockRequest(request)

end if

end procedure

function PREDICTRISKLEVEL(request)

model← LoadTrainedModel()

features← ExtractFeatures(request)

riskLevel← model.predict(features)

return riskLevel

end function

procedure TRAINRISKPREDICTION-
MODEL(historicalData)

model← InitializeModel()

X, y ← PreprocessData(historicalData)

model.train(X, y)

SaveTrainedModel(model)

end procedure

procedure PREPROCESSDATA(historicalData)

X ← []

y ← []

for data in historicalData do

features← ExtractFeatures(data)

label← GetLabel(data)

X.append(features)

y.append(label)

end for

return X, y

end procedure

procedure APPLYSECURITYPOL-
ICY(request, riskLevel)

if riskLevel = High then

EnableStrictV alidation(request)

RequireAdditionalAuthentication(request)

else if riskLevel = Medium then

EnableStandardV alidation(request)

else

EnableLooseV alidation(request)

end if

end procedure

13

quests based on factors like origin, user behavior,
and content. Machine learning algorithms can be
used to identify high-risk requests that warrant ad-
ditional security measures. Building profiles from
past data to detect suspicious changes in request
frequency or sequence that might betray a CSRF at-
tempt in progress.

The most robust CSRF protection will likely arise
from a multi-strategy using both RL and predictive
analytics in concert with established security best
practices. Predictive models can be used to dy-
namically adjust security policies and configurations
based on the risk levels of incoming requests, while
RL agents work to generate ever-more-secure to-
kens and spot CSRF attacks in real-time. The key
is to create an interwoven system where each com-
ponent enhances and informs the others, result-
ing in an adaptive security framework that grows
stronger with every new piece of data. With careful
design and continuous refinement, these technolo-
gies could help CSRF mitigation, offering a defense
against one of the most persistent threats in web se-
curity today. The effectiveness of RL and predictive
analytics techniques heavily relies on the quality and
availability of training data. CSRF attacks may be rel-
atively rare in real-world web traffic, making it chal-
lenging to collect sufficient and representative data
samples. Obtaining labeled data for CSRF attacks
can be time-consuming and may require manual an-
notation. Limited or biased training data can lead
to suboptimal performance and increased false pos-
itives or false negatives in CSRF detection and mit-
igation. CSRF attackers are constantly attempting
their techniques to bypass security measures. Al-
though RL and predictive analytics can adapt to new
attack patterns, there is a risk that attackers may find
ways to manipulate or deceive the learned models.
For example, attackers could generate adversarial
examples or use techniques like model poisoning to
mislead the CSRF detection and mitigation mecha-
nisms. Ensuring the robustness and resilience of the
RL and predictive models against adversarial attacks
is a challenge. Deploying RL and predictive analyt-
ics techniques in real-world web applications intro-
duces scalability and performance challenges. The
proposed approaches involve training and inference
of large models, which can be computationally in-
tensive and time-consuming. In high-traffic web ap-
plications, the overhead introduced by these tech-
niques may impact the overall system performance
and user experience. Optimizing the models for real-
time detection and mitigation while maintaining ac-
ceptable latency and throughput is a critical consid-

eration. Balancing the trade-off between security
effectiveness and system performance requires de-
sign and optimization of the RL and predictive ana-
lytics pipelines.

References

[1] T. Alexenko, M. Jenne, S. D. Roy, and W.
Zeng, “Cross-site request forgery: Attack and
defense,” in 2010 7th IEEE Consumer Com-
munications and Networking Conference, IEEE,
2010, pp. 1–2.

[2] A. Barabanov, A. Markov, and V. Tsirlov, “Infor-
mation security controls against cross-site re-
quest forgery attacks on software applications
of automated systems,” in Journal of Physics:
Conference Series, IOP Publishing, vol. 1015,
2018, p. 042 034.

[3] A. Barth, C. Jackson, and J. C. Mitchell, “Ro-
bust defenses for cross-site request forgery,” in
Proceedings of the 15th ACM conference on
Computer and communications security, 2008,
pp. 75–88.

[4] W. Zeller and E. W. Felten, “Cross-site re-
quest forgeries: Exploitation and prevention,”
The New York Times, pp. 1–13, 2008.

[5] W. Maes, T. Heyman, L. Desmet, and W.
Joosen, “Browser protection against cross-site
request forgery,” in Proceedings of the first ACM
workshop on Secure execution of untrusted
code, 2009, pp. 3–10.

[6] K. Sentamilselvan, S. L. Pandian, and D. K.
Sathiyamurthy, “Survey on cross site request
forgery,” (An Overview of CSRF), 2013.

[7] O. A. Batarfi, A. M. Alshiky, A. A. Almarzuki,
and N. A. Farraj, “Csrfdtool: Automated detec-
tion and prevention of a reflected cross-site re-
quest forgery,” International Journal of Infor-
mation Engineering and Electronic Business,
vol. 6, no. 5, p. 10, 2014.

[8] Z. Mao, N. Li, and I. Molloy, “Defeating cross-
site request forgery attacks with browser-
enforced authenticity protection,” in Financial
Cryptography and Data Security: 13th Interna-
tional Conference, FC 2009, Accra Beach, Bar-
bados, February 23-26, 2009. Revised Selected
Papers 13, Springer, 2009, pp. 238–255.

14

	Introduction
	Reinforcement Learning (RL) in Mitigating Cross-Site Request Forgery Attacks
	RL-based CSRF Token Generation
	RL-based CSRF Detection
	RL-based Request Validation
	RL-based User Behavior Analysis
	RL-based Security Policy Optimization

	Predictive Analytics in Mitigating Cross-Site Request Forgery Attacks
	Anomaly Detection
	Risk Scoring
	User Behavior Analysis
	Predictive Token Generation
	Adaptive Security Policies

	Conclusions

