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BLACK-BOX SETTINGS
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Abstract

The increasing adoption of machine learning models across various domains has brought to light
the critical issue of their vulnerability to adversarial attacks, raising concerns about their secu-
rity and reliability. This research discusses the adversarial capabilities that can be exploited at
different stages of the machine learning pipeline: training, testing, and deployment. We inves-
tigate the distinct challenges and opportunities adversaries face in both transparent (white-box)
and opaque (black-box) settings. Adversaries can tamper with the training data during the initial
phase of the machine learning pipeline, compromising the model’s learning process. In a trans-
parent setup, adversaries possess the ability to directly alter, introduce, or eliminate samples,
injecting malicious patterns. Conversely, in an opaque setup, adversaries can indirectly sway the
training process by manipulating data collection or preprocessing stages. Safeguarding against
training-stage attacks necessitates data cleansing, anomaly identification, and resilient training
techniques like adversarial training. Moving on to the testing phase, adversaries concentrate on
designing deceptive examples that mislead the trained model. Adversaries with comprehensive
knowledge of the model, operating in a white-box scenario, can meticulously craft highly tar-
geted adversarial instances. On the other hand, black-box adversaries, lacking direct access to
the model, employ techniques such as transferability to generate adversarial examples. Effec-
tive countermeasures against testing-stage attacks encompass adversarial training, ensemble
approaches, and randomized defense mechanisms. As the model is deployed and used in real-
world contexts, adversaries exploit vulnerabilities to undermine its performance. In a white-box
setting, adversaries can meticulously examine the model’s behavior and engineer targeted at-
tacks. Conversely, black-box adversaries probe the model and exploit weaknesses by carefully
constructing malicious inputs. To protect against deployment-stage threats, defenses such as
real-time monitoring, anomaly detection, secure deployment practices, and regular security as-
sessments are also discussed.

1. Introduction

Machine learning has bacame a transforma-
tive technology in the field of artificial intelli-
gence, enabling computers to achieve remark-
able performance across various tasks. From
image classification and speech recognition to
machine translation and game-playing, machine

learning systems have demonstrated an ex-
traordinary ability to learn from data and make
intelligent decisions. These advancements have
opened up new possibilities in numerous do-
mains, impacting industries such as healthcare,
finance, transportation, and entertainment.

However, despite the impressive successes
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of machine learning models, a significant vul-
nerability has been discovered: adversarial ex-
amples Dong et al., 2018. Adversarial examples
are carefully crafted inputs that are specifically
designed to deceive machine learning classi-
fiers Lin et al., 2017. An attacker can create
adversarial examples that are misclassified by
the learned model, leading to incorrect predic-
tions or decisions by introducing imperceptible
perturbations to the original inputs,. Szegedy
et al., 2013 introduced the idea of adversarial
examples, which revealed a significant vulner-
ability in neural networks. Their research has
generated considerable interest among scien-
tists studying adversarial attacks. It is expected
that the number and types of adversarial attacks
will keep growing in the future, driven by the in-
creasing potential for economic benefits. This
trend presents both challenges and opportuni-
ties for creating AI systems that are robust and
resilient against such attacks Madry et al., 2017.

What makes adversarial examples alarming
is that they are often indistinguishable from the
original inputs to the human eye. The pertur-
bations added to the input data are so subtle
that they go unnoticed by humans, yet they are
sufficient to fool the machine learning model.
This highlights a fundamental difference be-
tween how humans and machines process and
interpret information, raising questions about
the robustness and reliability of machine learn-
ing systems in real-world scenarios Bradshaw
et al., 2017.

The existence of adversarial examples poses
significant challenges and risks in various ap-
plications of machine learning. In safety-critical
domains such as autonomous vehicles or med-
ical diagnosis, the consequences of a machine
learning model being deceived by an adversar-
ial example can be severe. For instance, an ad-
versarial perturbation added to a stop sign could
cause an autonomous vehicle to misinterpret it
as a speed limit sign, leading to dangerous be-
havior on the road Cai et al., 2018. Similarly, in
medical imaging, an adversarial example could
trick a diagnostic model into misclassifying a

malignant tumor as benign, potentially delaying
necessary treatment.

Adversarial examples can be exploited as
a means of malicious attack against machine
learning systems. Attackers can take advantage
of this vulnerability to manipulate the behavior
of machine learning models for their own bene-
fit or to cause harm. For example, an attacker
could generate adversarial examples to bypass
a facial recognition system, gaining unautho-
rized access to restricted areas or resources. In
the tasks of spam filters or malware detection,
adversarial examples could be crafted to evade
detection, allowing malicious content to infiltrate
systems undetected Dong et al., 2018.

The phenomenon of adversarial examples
also highlights the need for a deeper under-
standing of how machine learning models make
decisions and what they actually learn from the
training data. It raises questions about the in-
terpretability and explainability of these models,
as well as their ability to generalize to new and
unseen examples. The lack of transparency in
the decision-making process of machine learn-
ing models can make it difficult to identify and
address potential weaknesses or biases.

The existence of adversarial examples shows
the importance of robustness and security in
machine learning systems. As these systems
become more and more integrated into critical
applications and decision-making processes,
ensuring their resilience against adversarial at-
tacks is necessary. The vulnerability exposed
by adversarial examples emphasizes the need
for rigorous testing, validation, and monitoring
of machine learning models to identify and miti-
gate potential risks Huang et al., 2017.

2. Adversarial capabilities, attacks, and
defenses during training stage

In the training stage, adversaries employ vari-
ous techniques to exploit vulnerabilities and un-
dermine the model’s learning process.

In a white-box setting, the adversary has full
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Figure 1: White-box adversarial attack on a machine learning model.

access to the training data and can directly mod-
ify, add, or remove examples from the dataset.
This level of access empowers the adversary to
craft malicious examples specifically designed
to mislead the model during training. The adver-
sary can manipulate the model by carefully per-
turbing existing examples or injecting new ones
to learn incorrect patterns, biases, or behaviors
that align with their intent Ilyas et al., 2018 Dai
et al., 2018.

One common technique in white-box attacks
is data poisoning. The adversary strategically
modifies a subset of the training examples to
introduce subtle perturbations or mislabeled in-
stances. These manipulated examples are
carefully crafted to be visually similar to benign
examples but are assigned incorrect labels or
contain imperceptible perturbations. When the
model is trained on this poisoned dataset, it
learns to associate the malicious patterns with
the wrong labels, leading to misclassification or
unintended behavior Lin et al., 2017 Liu et al.,
2018.

For instance, in an image classification task
where the model is trained to distinguish be-
tween different objects. An adversary could se-
lect a subset of images from the training set and
add imperceptible noise or modify a few pixels

in each image. These perturbed images are
then mislabeled as a different object class. Dur-
ing training, the model is repeatedly exposed to
these manipulated examples, causing it to learn
the adversary’s desired misclassification. As a
result, when the trained model is presented with
similar perturbed images during inference, it is
likely to misclassify them, falling victim to the ad-
versary’s attack.

The effectiveness of white-box attacks lies in
the adversary’s ability to carefully craft the mali-
cious examples based on their knowledge of the
model’s architecture, training process, and the
specific dataset. Using this information, the ad-
versary can optimize the perturbations to max-
imize the impact on the model’s learning while
minimizing the chances of detection.

Another technique used in white-box attacks
is gradient-based manipulation. In this ap-
proach, the adversary exploits the model’s gra-
dient information to craft adversarial examples.
The adversary can determine the direction and
magnitude of perturbations that would most sig-
nificantly impact the model’s predictions by cal-
culating the gradients of the model’s loss func-
tion with respect to the input features. The ad-
versary can generate adversarial examples that
are specifically tailored to deceive the model by
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iteratively adjusting the input features based on
the gradients.

Gradient-based attacks can be effective when
the adversary has access to the model’s archi-
tecture and can compute the gradients during
the training process. The adversary can guide
the model’s learning towards malicious patterns
or behaviors by carefully manipulating the gra-
dients. This can lead to the model learning in-
correct decision boundaries or becoming overly
sensitive to specific features that the adversary
has designed Liu et al., 2018 Bradshaw et al.,
2017. It is to note that white-box attacks require
a high level of access and knowledge, which
may not always be feasible in real-world sce-
narios. However, the potential consequences
of such attacks cannot be overlooked in criti-
cal applications where the integrity and reliabil-
ity of the model’s predictions are of utmost im-
portance.

In contrast to white-box attacks, black-box at-
tacks operate under more restricted conditions.
In a black-box setting, the adversary does not
have direct access to the training data or the
model’s internal workings. However, they can
still attempt to influence the training process in-
directly by manipulating the data that is fed into
the model.

One approach in black-box attacks is to ex-
ploit weaknesses in the data collection or pre-
processing pipeline. Adversaries can try to in-
ject malicious data points into the system, aim-
ing to pollute the training dataset. This can be
achieved by various means, such as submitting
manipulated user-generated content, exploiting
vulnerabilities in data scraping techniques, or
compromising data sources.

For example, consider a scenario where an
adversary targets a sentiment analysis model
trained on user reviews. The adversary could
generate a large number of fake reviews con-
taining misleading or biased content and sub-
mit them to the data collection system. If the
data preprocessing steps fail to filter out these

malicious reviews effectively, they can end up
in the training dataset, influencing the model’s
learning process. As a result, the trained model
may exhibit biased or incorrect predictions when
applied to real-world data Madry et al., 2017.
Black-box attacks often rely on the adversary’s
ability to generate adversarial examples that
can deceive the model. Even without access to
the training data, adversaries can craft perturba-
tions or manipulate inputs in a way that exploits
the model’s vulnerabilities. The adversary aims
to mislead the model and cause it to make in-
correct predictions by carefully designing these
adversarial examples and injecting them into the
data stream.

One technique used in black-box attacks is
transferability-based attacks. In this approach,
the adversary trains a substitute model using
a dataset similar to the target model’s training
data. The adversary can generate adversarial
examples that are likely to transfer to the tar-
get model by querying the target model with
carefully crafted inputs and observing its out-
puts. These transferable adversarial examples
can then be used to attack the target model,
even without direct access to its training data or
architecture.

The success of black-box attacks depends
on various factors, including the robustness of
the data collection and preprocessing pipeline,
the model’s architecture and training process,
and the adversary’s ability to generate effective
adversarial examples. While black-box attacks
may not have the same level of precision and
control as white-box attacks, they still pose a
significant threat, especially in scenarios where
the model relies on external data sources or
user-generated content.

Another aspect of adversarial attacks during
training is the concept of backdoor attacks. In a
backdoor attack, the adversary manipulates the
training data by injecting a specific trigger or pat-
tern that is associated with a desired malicious
behavior. The trigger can be a particular pixel
pattern, a specific word or phrase, or any other
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Figure 2: Black-box adversarial attack on a machine learning model.

carefully designed feature. During training, the
model learns to associate the trigger with the
malicious behavior, effectively creating a back-
door that the adversary can exploit later.

For instance, an adversary could manipulate
a subset of the training images by adding a spe-
cific pixel pattern or a small object, such as a
sticker, to the faces. These manipulated images
are then labeled as belonging to a particular au-
thorized individual. During training, the model
learns to associate the presence of the trigger
with the authorized label. As a result, when the
trained model is deployed, the adversary can
gain unauthorized access by presenting an im-
age with the trigger, bypassing the system’s se-
curity measures.

Backdoor attacks can be challenging to de-
tect and mitigate because the trigger is typically
designed to be inconspicuous and not easily
noticeable to human observers. The model’s
behavior appears normal for benign inputs, but
the presence of the trigger activates the mali-
cious behavior. This makes backdoor attacks
a serious concern, especially in sensitive ap-
plications where the model’s predictions have
significant consequences Narodytska and Ka-
siviswanathan, 2017.

It is to recognize that adversarial attacks dur-

ing training can have far-reaching implications
beyond the immediate impact on the model’s
performance. Adversarially trained models can
perpetuate biases, make unfair decisions, or
be exploited for malicious purposes. In do-
mains such as healthcare, finance, or criminal
justice, where machine learning models are in-
creasingly being used to make critical decisions,
the consequences of adversarial attacks in this
stage can be severe and have real-world im-
pacts on individuals and society as a whole.

Moreover, adversarial attacks during training
raise concerns about the trustworthiness and
reliability of machine learning models. If models
can be easily manipulated or deceived by adver-
saries, it undermines their credibility and poses
risks to the users who rely on their predictions.
This highlights the need for robust measures to
detect and defend against adversarial attacks,
as well as for increased transparency and ac-
countability in the development and deployment
of machine learning systems.

Adversarial attacks during the training stage
pose a significant threat to the integrity and per-
formance of machine learning models. Whether
it is through white-box attacks, where the ad-
versary has full access to the training data, or
black-box attacks, where the adversary manip-
ulates the input data stream, these attacks can
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Technique Dfenitions
Data Sanitization D′ = {xi ∈ D|xi is not suspicious or malicious}

Anomaly Detection

A(xi) = d(ϕ(xi), ϕ(D
′)), where d is a distance metric

and ϕ(D′) represents the normal patterns in the sanitized
dataset. Flag xi as an anomaly if A(xi) > τ , where τ is a
predefined threshold.

Adversarial Training

Generate adversarial examples xadvi for each xi ∈ D′ us-
ing an attack method. Train the model fθ on the aug-
mented dataset Dadv = {(xi, yi), (xadvi , yi)|xi ∈ D′, yi ∈ Y }.
Update model parameters θ to minimize the loss function
L(fθ(xi), yi) + L(fθ(xadvi ), yi).

Training with Noisy Examples

Generate noisy examples xnoisyi for each xi ∈ D′ by adding
random noise ϵ ∼ N (0, σ2). Train the model fθ on the aug-
mented dataset Dnoisy = {(xi, yi), (xnoisyi , yi)|xi ∈ D′, yi ∈
Y }. Update model parameters θ to minimize the loss func-
tion L(fθ(xi), yi) + L(fθ(xnoisyi ), yi).

Table 1: Techniques for Defending Against Adversarial Attacks During Training

lead to models learning incorrect patterns, ex-
hibiting biased behavior, or making erroneous
predictions. The consequences of adversarial
attacks extend beyond the immediate impact on
the model’s performance, as they can perpetu-
ate biases, make unfair decisions, and under-
mine the trustworthiness of machine learning
systems.

Defending against adversarial attacks dur-
ing the training stage involves several tech-
niques. Data sanitization is one such step,
where the training data is carefully examined
and filtered to remove any suspicious or poten-
tially malicious examples. Let D be the train-
ing dataset and apply a function f(D) → D′ to
filter out suspicious or malicious examples, re-
sulting in a sanitized dataset D′ = {xi ∈ D |
xi is not suspicious or malicious}.

Anomaly detection methods can be employed
to identify and flag unusual patterns or outliers
in the training data. Let xi be a training exam-
ple and ϕ(xi) be a function that extracts rele-
vant features. Define an anomaly score A(xi) =
d(ϕ(xi), ϕ(D

′)), where d is a distance metric and
ϕ(D′) represents the normal patterns in the san-
itized dataset. Flag xi as an anomaly if A(xi) >
τ , where τ is a predefined threshold.

Additionally, robust training methods, such as
adversarial training or training with noisy exam-
ples, can help the model become more resilient
to adversarial perturbations. For adversarial
training, generate adversarial examples xadvi for
each xi ∈ D′ using an attack method and train
the model fθ on the augmented dataset Dadv =
{(xi, yi), (xadvi , yi) | xi ∈ D′, yi ∈ Y }. Update
model parameters θ to minimize the loss func-
tion L(fθ(xi), yi) + L(fθ(xadvi ), yi). For training
with noisy examples, generate noisy examples
xnoisyi for each xi ∈ D′ by adding random noise
ϵ ∼ N (0, σ2) and train the model fθ on the aug-
mented dataset Dnoisy = {(xi, yi), (xnoisyi , yi) |
xi ∈ D′, yi ∈ Y }. Update model parameters
θ to minimize the loss function L(fθ(xi), yi) +
L(fθ(xnoisyi ), yi).

When incorporating these techniques, the
model learns to correctly classify adversar-
ial examples, reducing its vulnerability to
such attacks. The training process becomes
θ∗ = argminθ E(xi,yi)∈Dadv∪Dnoisy [L(fθ(xi), yi)],
where θ∗ represents the optimal model param-
eters that minimize the expected loss over the
augmented training dataset. Explicitly incorpo-
rating adversarial examples into the training pro-
cess helps the model learn to correctly classify
them, reducing its vulnerability to such attacks.
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3. Adversarial capabilities, attacks, and
defenses in testing stage

Adversarial attacks on machine learning models
have also became a significant concern during
the testing stage when the model is exposed to
real-world data. These attacks aim to deceive
the trained model by crafting carefully designed
inputs known as adversarial examples, which
can cause the model to make incorrect predic-
tions or classifications.

At the core of adversarial attacks during the
testing stage lies the concept of adversarial ex-
amples. These are strategically manipulated
inputs that are specifically crafted to fool the
model while appearing normal or innocuous to
human observers. Adversaries can exploit the
model’s vulnerabilities and trigger misclassifi-
cations or unintended behaviors by introducing
subtle perturbations or modifications to the in-
put data. The severity of adversarial attacks
is amplified by the fact that they can be diffi-
cult to detect and defend against. Adversarial
examples often resemble legitimate inputs and
can be imperceptible to the human eye. This
makes it challenging to distinguish between be-
nign and malicious instances, as the perturba-
tions are carefully designed to be minimal yet
effective in deceiving the model Narodytska and
Kasiviswanathan, 2017 Pang et al., 2018. Ad-
versarial attacks during the testing stage can be
broadly categorized into two settings: white-box
attacks and black-box attacks. The distinction
lies in the level of access and knowledge the ad-
versary possesses about the target model.

In a white-box setting, the adversary has com-
plete access to the model’s architecture, pa-
rameters, and even the test data. This knowl-
edge empowers the adversary to perform a de-
tailed analysis of the model’s internals, uncov-
ering specific vulnerabilities and weaknesses
that can be exploited. The adversary can craft
highly targeted adversarial examples tailored to
the specific model by leveraging this informa-
tion. White-box attacks often involve a process
of studying the model’s decision boundaries, ac-

tivation patterns, and feature representations.
The adversary can iteratively modify input fea-
tures, adding imperceptible noise or applying
carefully calculated perturbations to manipulate
the model’s output. These perturbations are de-
signed to push the input across the decision
boundary, causing the model to misclassify the
example. One of the most prominent techniques
used in white-box attacks is gradient-based op-
timization. Accessing the model’s gradients al-
lows the adversary to determine the direction
and magnitude of perturbations that would have
the most significant impact on the model’s pre-
dictions. Through iterative optimization, the ad-
versary can refine the adversarial examples to
maximize their effectiveness while minimizing
the perceptibility of the modifications Bradshaw
et al., 2017 Pang et al., 2018. White-box at-
tacks pose a significant threat because they al-
low adversaries to create highly customized and
potent adversarial examples. These examples
are crafted with a deep understanding of the
model’s weaknesses and can be extremely dif-
ficult to detect or defend against. In domains
like autonomous vehicles, medical diagnosis, or
financial systems, the consequences of white-
box attacks are severe, where the model’s pre-
dictions have critical implications.

In contrast to white-box attacks, black-box
attacks operate under more limited access to
the target model. In a black-box setting, the
adversary does not have direct access to the
model’s internal details but can still interact with
it by querying the model with inputs and observ-
ing the corresponding outputs. Despite the re-
stricted access, black-box attacks can still pose
significant risks to the model’s integrity. One of
the key techniques used in black-box attacks is
transferability. Transferability refers to the prop-
erty where adversarial examples generated for
one model can also fool other models with sim-
ilar architectures or trained on similar data. By
exploiting this property, adversaries can create
adversarial examples without direct access to
the target model. The process of launching a
black-box attack often involves training a surro-
gate model that mimics the behavior of the tar-
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Figure 3: White-box adversarial attack process

get model. The adversary collects a dataset
of inputs and their corresponding outputs by
querying the target model. This dataset is then
used to train the surrogate model, which serves
as an approximation of the target model’s de-
cision boundaries. Once the surrogate model
is trained, the adversary can generate adver-
sarial examples using various techniques, such
as gradient-based optimization or evolutionary
algorithms. These adversarial examples are
crafted to fool the surrogate model and, due to
transferability, are likely to also deceive the tar-
get model. Black-box attacks highlight the im-
portance of model robustness and the need for
defenses that can withstand adversarial exam-
ples generated from different models or archi-
tectures. The transferability property shows the
possibility for adversarial examples to have a
broader impact, affecting not only the specific
model they were crafted for but also other mod-
els in the same domain. The consequences
of adversarial attacks during the testing stage
can be significant and far-reaching. In safety-
critical applications, such as autonomous vehi-

cles or medical diagnosis, a single misclassifi-
cation induced by an adversarial example can
lead to disastrous outcomes. False positives or
false negatives caused by adversarial attacks
can undermine the reliability and trustworthi-
ness of these systems, eroding public confi-
dence in their deployment Huang et al., 2017
Pang et al., 2018.

Defending against adversarial attacks during
the testing stage involves various techniques.
One effective approach is adversarial training,
where the model is explicitly trained on adver-
sarial examples alongside the original clean ex-
amples. Let D = {(xi, yi)}Ni=1 be the training
dataset, where xi is an input example and yi
is its corresponding label. Generate adversar-
ial examples xadvi for each xi ∈ D using an at-
tack method and train the model fθ on the aug-
mented dataset Dadv = {(xi, yi), (xadvi , yi)}Ni=1.
Update model parameters θ to minimize the
loss function: L(θ) = 1

N

∑N
i=1[ℓ(fθ(xi), yi) +

ℓ(fθ(x
adv
i ), yi)] where ℓ is a suitable loss func-

tion (e.g., cross-entropy loss).
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Figure 4: Black-box adversarial attack using transferability

Ensemble methods, where multiple models
are combined to make predictions, can also
improve robustness by leveraging the collec-
tive decision-making of different models. Let
{fθ1 , fθ2 , . . . , fθM } be an ensemble of M trained
models. For a test input x, obtain the pre-
dictions from each model: {ŷ1, ŷ2, . . . , ŷM} and
combine the predictions using a suitable aggre-
gation function g: ŷ = g(ŷ1, ŷ2, . . . , ŷM ) where g
can be majority voting, averaging, or weighted
averaging based on model confidences Song et
al., 2018.

Randomized defenses, such as adding ran-
dom noise or applying random transformations
to the input data, can make it harder for ad-
versaries to craft effective adversarial exam-
ples. For random noise addition, generate a
noisy version xnoisy = x + ϵ for a test input
x, where ϵ ∼ N (0, σ2) is random Gaussian
noise, and predict the label for xnoisy using the
trained model: ŷ = fθ(x

noisy). For random
transformations, define a set of random trans-
formations T = {T1, T2, . . . , TK} (e.g., rotation,
translation, scaling), randomly select a trans-
formation T ∈ T for a test input x, apply it
to obtain xtransformed = T (x), and predict the
label for xtransformed using the trained model:
ŷ = fθ(x

transformed).

Incorporating these techniques during testing
makes the model more robust to adver-
sarial attacks. The prediction process can
be formalized as: ŷ = fθ(x

adv) or ŷ =
g(fθ1(x), fθ2(x), . . . , fθM (x)) or ŷ =
fθ(x

noisy) or ŷ = fθ(x
transformed), where

ŷ represents the predicted label for the test
input x, obtained using one of the defensive
techniques mentioned above. The model’s
robustness to adversarial attacks can be signif-
icantly improved by exposing it to adversarial
examples during training and employing en-
semble methods and randomized defenses
during testing.

4. Adversarial capabilities, attacks, and
defenses deployment stage

Adversarial attacks on machine learning models
have emerged as a significant concern, particu-
larly during the deployment stage when models
are actively used to make decisions and predic-
tions in real-world scenarios. These attacks ex-
ploit vulnerabilities in the deployed models, al-
lowing adversaries to manipulate the model’s
behavior and cause unintended consequences
Tramèr et al., 2017. The deployment stage
presents unique challenges and risks, as the
model is exposed to a wide range of inputs
and interactions, making it susceptible to vari-
ous types of adversarial attacks.

White-Box Attacks in Deployment: In a white-
box setting, the adversary has extensive knowl-
edge and access to the deployed model, includ-
ing its architecture, parameters, and even the
input data being fed into the model. This level
of access enables the adversary to perform a
comprehensive analysis of the model’s behav-
ior and identify potential vulnerabilities that can
be exploited.

One of the key advantages of a white-box
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Technique Mathematical Expression

Adversarial Training

Generate adversarial examples xadvi for each xi ∈ D us-
ing an attack method. Train the model fθ on the aug-
mented dataset Dadv = {(xi, yi), (xadvi , yi)}Ni=1. Update
model parameters θ to minimize the loss function: L(θ) =
1
N

∑N
i=1[ℓ(fθ(xi), yi) + ℓ(fθ(x

adv
i ), yi)] where ℓ is a suitable

loss function (e.g., cross-entropy loss).

Ensemble Methods

Let {fθ1 , fθ2 , . . . , fθM } be an ensemble of M trained mod-
els. For a test input x, obtain the predictions from each
model: {ŷ1, ŷ2, . . . , ŷM}. Combine the predictions using
a suitable aggregation function g: ŷ = g(ŷ1, ŷ2, . . . , ŷM )
where g can be majority voting, averaging, or weighted av-
eraging based on model confidences.

Random Noise Addition
For a test input x, generate a noisy version xnoisy = x + ϵ,
where ϵ ∼ N (0, σ2) is random Gaussian noise. Predict the
label for xnoisy using the trained model: ŷ = fθ(x

noisy).

Random Transformations

Define a set of random transformations T =
{T1, T2, . . . , TK} (e.g., rotation, translation, scaling).
For a test input x, randomly select a transformation
T ∈ T and apply it to obtain xtransformed = T (x). Pre-
dict the label for xtransformed using the trained model:
ŷ = fθ(x

transformed).

Table 2: Techniques for Defending Against Adversarial Attacks During Testing

attack during deployment is the ability to craft
highly targeted and effective adversarial exam-
ples. By leveraging their knowledge of the
model’s internals, adversaries can design in-
puts that are specifically tailored to deceive the
model and cause it to make incorrect predictions
or decisions. These adversarial examples can
be carefully constructed to exploit the model’s
weaknesses, such as its sensitivity to certain
features or its reliance on specific patterns in the
input data.

Figure 5 illustrates a white-box adversarial
setting in the context of a self-driving car sce-
nario. In this example, the adversary has ac-
cess to the model architecture, parameters, and
input data being used by the self-driving car’s
decision-making system. With this level of ac-
cess, the adversary can analyze the model’s be-
havior and identify vulnerabilities that can be ex-
ploited to manipulate the car’s decisions in real-
time.

For instance, the adversary could manipulate
the input data, such as the images captured by
the car’s cameras or the sensor readings, to
mislead the model and cause the car to make
dangerous or unintended maneuvers. By care-
fully crafting perturbations or adding impercepti-
ble noise to the input data, the adversary can
exploit the model’s sensitivity to specific fea-
tures and trigger misclassifications or erroneous
predictions.

The consequences of white-box attacks dur-
ing deployment can also be severe in safety-
critical applications like self-driving cars. A
successful attack could compromise the sys-
tem’s integrity, leading to accidents, collisions,
or other harmful outcomes. The adversary’s
ability to manipulate the model’s behavior in
real-time poses significant risks to the safety
and reliability of the deployed system Huang
et al., 2017 Narodytska and Kasiviswanathan,
2017.
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Model ArchitectureParameters

Input Data

Self-Driving Car

Real-TimeDecision Making

Adversary

Figure 5: White-box adversarial setting in a self-driving car scenario.

In contrast to white-box attacks, black-box at-
tacks operate under more limited access to the
deployed model. In a black-box setting, the
adversary does not have direct access to the
model’s internal details but can still interact with
the model by sending inputs and observing the
corresponding outputs.

Black-box attacks during deployment rely on
the adversary’s ability to probe the model and
gather information about its behavior through
carefully crafted queries. By sending differ-
ent inputs to the model and analyzing the
responses, the adversary can infer patterns,
weaknesses, or inconsistencies that can be ex-
ploited to generate adversarial examples.

Figure 6 depicts a black-box attack scenario
on a deployed model. In this setting, the adver-
sary interacts with the model through an API or
integration point, allowing them to send crafted

inputs and observe the model’s outputs. The ad-
versary can systematically probe the model with
various inputs, analyzing the responses to iden-
tify vulnerabilities or weaknesses in the model’s
decision-making process.

One common approach in black-box attacks
is to exploit the transferability property of ad-
versarial examples. Transferability refers to the
phenomenon where adversarial examples gen-
erated for one model can also deceive other
models with similar architectures or trained on
similar data. By leveraging this property, adver-
saries can create adversarial examples using a
surrogate model and then use those examples
to attack the deployed model, even without di-
rect access to its internals.

Black-box attacks during deployment can also
target the model’s integration with other systems
or the input data pipeline. Adversaries may at-
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Deployed
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Adversary

Model Output

API / In-
tegration

Input Data
Pipeline

Crafted Inputs Responses

Probe

Manipulate

Black-box
Attack

Vulnerabilities

Analyze
Outputs

Exploit API

Hijack Data
Pipeline

Figure 6: Black-box attack scenario on a deployed model with images.

tempt to manipulate the data being fed into the
model, either by injecting malicious data points
or by hijacking the communication channels be-
tween the model and its data sources. By cor-
rupting or poisoning the input data, adversaries
can indirectly influence the model’s predictions
and cause it to make erroneous decisions.

The consequences of black-box attacks dur-
ing deployment can be significant, as they can
undermine the reliability and trustworthiness of
the deployed model. Even without direct access
to the model’s internals, adversaries can exploit
vulnerabilities and weaknesses to manipulate
the model’s behavior and cause unintended out-
comes. This can lead to financial losses, reputa-
tional damage, or even physical harm in critical
applications.

Real-World Impact of Adversarial Attacks dur-

ing Deployment: The impact of adversarial at-
tacks during the deployment stage extends be-
yond the immediate consequences on the tar-
geted system. These attacks can have far-
reaching implications for individuals, organiza-
tions, and society as a whole.

In domains such as healthcare, finance, and
criminal justice, machine learning models are
increasingly being used to make important de-
cisions that directly affect people’s lives. Ad-
versarial attacks on deployed models in these
domains can lead to misdiagnoses, financial
losses, or wrongful convictions. The conse-
quences of such attacks can be devastating,
causing harm to individuals and eroding trust in
the use of machine learning systems.

Moreover, adversarial attacks during deploy-
ment can undermine the reliability and trustwor-
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Technique Definitions

Runtime Monitoring

Define a monitoring function M(x) that assesses the in-
put for anomalies or suspicious patterns. If M(x) exceeds
a predefined threshold τ , trigger an appropriate defense

mechanism D(x): D(x) =

{
Reject x if M(x) > τ

Accept x otherwise

Anomaly Detection

Define an anomaly score A(x) = − log p(x) that measures
the deviation of x from the expected distribution. Flag input
x as anomalous if A(x) > τ and trigger further investigation
or defense mechanisms.

Input Validation

Define a validation function V (x) that checks the in-
put x against predefined constraints and rules. If
V (x) fails, reject the input: Input Validation(x) ={

Reject x if V (x) fails
Accept x otherwise

Data Encryption

Let Ek(x) be an encryption function with key k that en-
crypts the input x. Before feeding the input to the model,
encrypt it: xencrypted = Ek(x). Decrypt the input within a
secure environment before processing: x = Dk(x

encrypted),
where Dk is the decryption function with key k.

Access Control

Define an access control policy P that specifies the permit-
ted actions and privileges for different entities. Enforce the
policy during deployment to limit unauthorized access and
manipulation of the model and its inputs.

Security Audits and Penetra-
tion Testing

Conduct regular security audits to assess the system’s vul-
nerabilities and risks. Perform penetration testing by sim-
ulating adversarial attacks to identify weaknesses and im-
prove the system’s defenses. Update the model, deploy-
ment practices, and defense mechanisms based on the
findings of the audits and testing.

Table 3: Techniques for Defending Against Adversarial Attacks During Deployment

thiness of machine learning models in the eyes
of the public. If deployed models are shown to
be vulnerable to manipulation or deception, it
can lead to a loss of confidence in the technol-
ogy and hinder its adoption in critical applica-
tions. The public’s trust in the decisions made
by these models is crucial for their successful
integration into various domains.

The deployment stage also presents chal-
lenges in terms of detecting and responding
to adversarial attacks in real-time. Unlike the
training or testing stages, where attacks can be
identified and mitigated before the model is put
into production, attacks during deployment re-

quire immediate detection and response mech-
anisms. The ability to quickly identify and neu-
tralize adversarial inputs is essential to minimize
the impact of the attack and maintain the sys-
tem’s integrity.

Furthermore, the evolving nature of adversar-
ial attacks means that deployed models must be
continuously monitored and updated to stay re-
silient against new and emerging threats. As
adversaries adapt their techniques and dis-
cover new vulnerabilities, the deployed models
must be regularly evaluated and strengthened
to maintain their robustness and reliability.
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Conclusion: Adversarial attacks during the
deployment stage pose significant challenges
and risks to the reliability, trustworthiness, and
safety of machine learning models in real-world
scenarios. Whether through white-box attacks
that exploit detailed knowledge of the model’s
internals or black-box attacks that leverage the
model’s input-output behavior, adversaries can
manipulate the model’s decisions and cause un-
intended consequences.

The impact of these attacks extends beyond
the immediate system, affecting individuals, or-
ganizations, and society as a whole. The con-
sequences can be severe, ranging from finan-
cial losses and reputational damage to physical
harm and loss of public trust in machine learn-
ing technology.

As machine learning models become increas-
ingly integrated into critical decision-making
processes, it is crucial to prioritize research and
development efforts in adversarial robustness
and resilience. Developing effective detection
and response mechanisms, as well as regularly
updating and strengthening deployed models,
are essential steps in mitigating the risks posed
by adversarial attacks.

The deployment stage represents a critical
frontier in the battle against adversarial attacks,
and it requires ongoing vigilance, collaboration,
and innovation from researchers, practitioners,
and stakeholders across various domains. By
proactively addressing the challenges and risks
associated with adversarial attacks during de-
ployment, we can work towards building more
secure, reliable, and trustworthy machine learn-
ing systems that can withstand the evolving
landscape of adversarial threats.

Defending against adversarial attacks during
the deployment stage requires a multi-faceted
approach. Runtime monitoring is crucial to de-
tect anomalous or suspicious inputs in real-time
and trigger appropriate defense mechanisms.
Let x be an input to the deployed model fθ
and define a monitoring function M(x) that as-

sesses the input for anomalies or suspicious
patterns. If M(x) exceeds a predefined thresh-
old τ , trigger an appropriate defense mecha-

nism D(x): D(x) =

{
Reject x if M(x) > τ

Accept x otherwise
.

Anomaly detection techniques can be em-
ployed to identify inputs that deviate significantly
from the expected distribution and flag them for
further investigation. Let X be the set of ex-
pected inputs and p(x) be the probability dis-
tribution of x ∈ X . Define an anomaly score
A(x) = − log p(x) that measures the deviation
of x from the expected distribution. Set a thresh-
old τ based on the desired false positive rate
and flag input x as anomalous if A(x) > τ , trig-
gering further investigation or defense mecha-
nisms.

Secure deployment practices, such as input
validation, data encryption, and access control,
can help minimize the attack surface and limit
the adversary’s ability to manipulate the model
or its inputs. For input validation, define a val-
idation function V (x) that checks the input x
against predefined constraints and rules, reject-
ing the input if V (x) fails. For data encryp-
tion, let Ek(x) be an encryption function with
key k that encrypts the input x before feeding
it to the model, and decrypt the input within
a secure environment before processing: x =
Dk(x

encrypted), where Dk is the decryption func-
tion with key k. For access control, define an
access control policy P that specifies the per-
mitted actions and privileges for different enti-
ties and enforce the policy during deployment to
limit unauthorized access and manipulation of
the model and its inputs.

Regular security audits and penetration
testing can proactively identify and address
vulnerabilities in the deployed system. Con-
duct regular security audits to assess the
system’s vulnerabilities and risks, and perform
penetration testing by simulating adversarial
attacks to identify weaknesses and improve
the system’s defenses. Update the model,
deployment practices, and defense mecha-
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nisms based on the findings of the audits
and testing. The overall defense strat-
egy can be formalized as: Defense(x) ={

Reject x if M(x) > τ or V (x) fails
fθ(Dk(x

encrypted)) otherwise
,

where Defense(x) represents the end-to-end
defense mechanism applied to the input x
during deployment, considering runtime moni-
toring, anomaly detection, input validation, and
data encryption.

5. Conclusions

Adversarial examples represent a significant
challenge in the field of machine learning, ex-
posing a concerning vulnerability in these pow-
erful systems. The ability of carefully crafted
perturbations to deceive machine learning clas-
sifiers raises questions about the reliability and
trustworthiness of these models in real-world
applications. Adversarial capabilities can vary
significantly across the different stages of the
machine learning pipeline, which include train-
ing, testing, and deployment. Each stage
presents unique challenges and opportunities
for adversaries to manipulate or exploit the
model. During the training stage, adversarial
capabilities primarily revolve around the adver-
sary’s ability to manipulate or poison the training
data used to build the machine learning model.
In a white-box setting, the adversary has full ac-
cess to the training data and can directly modify,
add, or remove examples from the dataset. This
level of access allows the adversary to intro-
duce carefully crafted malicious examples that
can mislead the model during training. By in-
jecting specifically designed examples, the ad-
versary can manipulate the model to learn in-
correct patterns, biases, or behaviors that align
with their malicious intent. For instance, an ad-
versary could add a small perturbation to an im-
age in the training set, causing the model to mis-
classify it as a different object. Repeated expo-
sure to such manipulated examples during train-
ing can lead the model to internalize the adver-
sary’s desired behavior. In a black-box setting,
the adversary may not have direct access to the
training data but can still attempt to influence

the training process indirectly. They can try to
manipulate the data collection process by in-
jecting malicious data points into the pipeline or
exploiting weaknesses in the data preprocess-
ing steps. For example, if the training data is
collected from user-generated content, an ad-
versary could flood the data collection system
with manipulated or misleading examples. Even
without direct access to the training data, the ad-
versary can still impact the model’s learning pro-
cess by polluting the input data stream. Defend-
ing against adversarial attacks during the train-
ing stage involves several techniques. In data
sanitization, the training data is carefully exam-
ined and filtered to remove any suspicious or
potentially malicious examples. Anomaly detec-
tion methods can be employed to identify and
flag unusual patterns or outliers in the training
data. Additionally, robust training methods, such
as adversarial training or training with noisy ex-
amples, can help the model become more re-
silient to adversarial perturbations. Explicitly in-
corporating adversarial examples into the train-
ing process helps the model learn to correctly
classify them, thereby reducing its vulnerability
to such attacks.

Testing Stage: Adversarial capabilities during
the testing stage focus on the adversary’s ability
to craft adversarial examples that can deceive
the trained model and cause it to make incor-
rect predictions or classifications. In a white-
box setting, the adversary has complete knowl-
edge of the model’s architecture, parameters,
and even access to the test data. Armed with
this information, the adversary can analyze the
model’s internals and identify specific vulnera-
bilities or weaknesses. They can then gener-
ate highly targeted adversarial examples that
exploit these vulnerabilities. For instance, by
carefully perturbing input features or adding im-
perceptible noise to the test examples, the ad-
versary can manipulate the model’s output and
force it to make incorrect predictions. White-box
adversarial examples are dangerous because
they are tailored to the specific model and can
be highly effective in fooling it. In a black-box
setting, the adversary does not have access
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to the model’s internal details but can still at-
tempt to create adversarial examples by query-
ing the model with crafted inputs and observ-
ing the outputs. The adversary can use tech-
niques like transferability, where adversarial ex-
amples generated for one model can also fool
other models with similar architectures. The ad-
versary can create adversarial examples with-
out direct access to the target model by exploit-
ing the transferability property. They can train a
surrogate model with a similar architecture and
generate adversarial examples for it, which are
then used to attack the target model. Defend-
ing against adversarial attacks during the testing
stage involves various techniques. One effec-
tive approach is adversarial training, where the
model is explicitly trained on adversarial exam-
ples alongside the original clean examples. Ex-
posing the model to adversarial examples dur-
ing training helps it learn to recognize and cor-
rectly classify them, thus making it more robust
to such attacks. Ensemble methods, where mul-
tiple models are combined to make predictions,
can also improve robustness by leveraging the
collective decision-making of different models.
Randomized defenses, such as adding random
noise or applying random transformations to the
input data, can make it harder for adversaries
to craft effective adversarial examples. Deploy-
ment Stage: Adversarial capabilities during the
deployment stage involve the adversary’s abil-
ity to exploit the model in real-world scenarios,
where the model is actively being used to make
decisions or predictions. In a white-box setting,
the adversary may have access to the deployed
model’s architecture, parameters, and even the
input data being fed into the model. With this
level of access, the adversary can analyze the
model’s behavior and identify potential vulner-
abilities. They can craft targeted attacks that
manipulate the model’s output in real-time, po-
tentially causing harm or compromising the sys-
tem’s integrity. For example, in a self-driving
car scenario, an adversary with white-box ac-
cess could manipulate the input data to mis-
lead the model and cause the car to make dan-
gerous decisions. In a black-box setting, the
adversary does not have direct access to the

model’s internals but can still attempt to fool the
deployed model by sending carefully crafted in-
puts and observing the model’s responses. The
adversary can probe the model with different in-
puts and analyze the outputs to infer patterns
or weaknesses. They can then exploit these
weaknesses by crafting adversarial examples
that are likely to deceive the model in real-world
scenarios. Additionally, the adversary can try
to exploit vulnerabilities in the model’s integra-
tion with other systems or APIs, such as ma-
nipulating the input data pipeline or hijacking
the communication channels. Runtime monitor-
ing is used to detect anomalous or suspicious
inputs in real-time and trigger appropriate de-
fense mechanisms. Anomaly detection tech-
niques can also be employed to identify inputs
that deviate significantly from the expected dis-
tribution and flag them for further investigation.
Secure deployment practices, such as input vali-
dation, data encryption, and access control, can
help minimize the attack surface and limit the
adversary’s ability to manipulate the model or
its inputs. Regular security audits and penetra-
tion testing can proactively identify and address
vulnerabilities in the deployed system.

The boundaries between these stages can
sometimes be blurry, and adversarial capabili-
ties can span across multiple stages. An ad-
versary may use knowledge gained during the
training stage to craft more effective attacks dur-
ing testing or deployment. An all-inclusive de-
fense strategy should consider adversarial ca-
pabilities across all stages of the machine learn-
ing pipeline. Addressing adversarial capabili-
ties requires an all-inclusive approach that in-
corporates defense mechanisms at each stage.
This includes robust training techniques to make
the model resilient to adversarial perturbations,
thorough testing and evaluation to identify and
mitigate vulnerabilities, and secure deployment
practices to protect the model in real-world sce-
narios. Monitoring, regular updates, and adap-
tive defense mechanisms are essential to keep
pace with adversarial threats and maintain the
model’s robustness over time.
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