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Abstract

Data availability in healthcare faces numerous chal-
lenges that stem from various technical, environmen-
tal, and security issues. These include medical de-
vice malfunctions, unreliable data transmission proto-
cols, and failures in authentication systems,that disrupt
the timely and accurate collection and transmission of
healthcare data. This study explores the core barriers
to data availability in healthcare systems, categorizing
them into three broad areas: (1) Technological Failures,
such as device malfunctions and calibration errors that
compromise data collection; (2) Authentication and Se-
curity Bottlenecks, which involve failures in access con-
trol systems that prevent authorized personnel from
accessing critical data; and (3) Environmental and In-
frastructural Constraints, such as network instability,
electromagnetic interference, and power outages that
interrupt data transmission. This paper also provides
an in-depth evaluation of existing solutions aimed at ad-
dressing these challenges and proposes new methods to
improve data availability. Specifically, it discusses data
transmission protocols, real-time device diagnostics, de-
centralized security architectures like blockchain, and
improved device calibration techniques using machine
learning algorithms. The proposed solutions focus on
increasing the resilience of healthcare data collection
and transmission, integrating state-of-the-art technolo-
gies such as edge computing, predictive maintenance
models, and biometric authentication systems. These
technologies can improve data reliability, reduce latency,
and ensure that healthcare data remains available in
the correct format in order to supoport both real-time
clinical decisions and long-term healthcare analytics.
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1. INTRODUCTION

The evolution of healthcare has been punctuated by incremen-
tal technological advances and improving various aspects of
diagnosis, treatment, and patient care. The arrival of digital
technologies such as artificial intelligence (AI), machine learning
(ML), and the Internet of Things (IoT) has shifted the paradigm
more dramatically. Healthcare providers now manage data at
scales previously unimaginable, with large volumes of patient in-
formation flowing into integrated electronic health record (EHR)
systems from wearables, clinical labs, and imaging devices. This
surge in data collection has set the stage for AI and ML algo-
rithms to identify patterns that would have otherwise gone
unnoticed by human practitioners. Thus, what began as isolated
technological enhancements has culminated in a digital trans-
formation where data-driven observations are now central to
clinical decision-making and personalized medicine [1, 2].

In hospitals, clinics, and laboratories, technological systems
have become inextricably linked to day-to-day operations. For
instance, advanced imaging techniques combined with Al-
powered diagnostic tools have allowed for more accurate, early
detection of diseases such as cancer, where treatment outcomes
are highly dependent on early intervention. Similarly, robotic-
assisted surgeries have demonstrated greater precision, reduc-
ing human error and improving patient recovery times. Initially,
these systems may have seemed like supplementary aids, but
their integration into healthcare workflows has proven essential
for optimizing both clinical outcomes and resource management.
The increasing reliance on digital tools has thus redefined the
role of the healthcare professional, whose expertise is now aug-
mented by technology in nearly every aspect of care delivery [3].

On the patient side, digital health solutions are creating more
personalized and convenient care experiences. Telemedicine
platforms have transformed how patients interact with health-
care providers, allowing for remote consultations, diagnostics,
and even treatments. Mobile health applications, wearable de-
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Fig. 1. The importance of real-time access to patient data for clinicians and researchers

Table 1. Components of Data Availability in Healthcare

Component Description

Electronic Health Records
(EHRs)

Digital records containing structured data such as diagnostic codes, treatment histories, and
lab results, along with unstructured data like physician notes.

Diagnostic Imaging Systems

Medical imaging data from MRI, CT scans, and other modalities, aiding in the diagnosis and
management of diseases.

Genomic Data

Genetic information critical for precision medicine, where treatments are tailored based on the
patient’s unique genetic profile.

Wearable Devices and Mo-

Real-time health data generated from patient devices tracking vital signs, physical activity, and

bile Applications other metrics.

Table 2. Key Impacts of Data Availability in Healthcare

Impact Description

Improved Clinical Decision-
Making

Access to comprehensive patient data enables healthcare providers to make more informed
diagnostic and treatment decisions, integrating historical, laboratory, and imaging data.

Personalized Medicine

The availability of genetic and lifestyle data allows for tailored treatments specific to individual
patients, moving away from generalized treatment models.

Population Health Manage-
ment

Aggregated data from large populations supports the identification of disease trends and
informs public health strategies, especially in managing chronic diseases.

Biomedical Research

Large datasets support robust research, enabling discoveries in fields like genomics and phar-
macology by providing diverse, real-world data.

vices, and home monitoring systems continuously collect health
metrics such as heart rate, glucose levels, and activity patterns,
which are then analyzed in real-time. Initially intended to offer
convenience, these technologies now enable continuous mon-
itoring and early intervention for chronic conditions such as
diabetes and cardiovascular diseases. As patients become more
engaged with their own health data, they participate more ac-
tively in their care plans, leading to better health outcomes and
more effective disease management. The convergence of these
patient-centric technologies indicates that healthcare is shifting

from episodic, facility-based care to continuous, data-driven care
delivery.

In the background of these innovations lies a complex infras-
tructure of digital platforms that support the interoperability of
healthcare systems. Cloud computing has enabled the central-
ization of vast amounts of medical data, making it accessible to
authorized healthcare professionals anywhere in the world. This
capability is especially critical during public health emergen-
cies, such as the COVID-19 pandemic, where real-time access
to patient data across regions enabled more coordinated and
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effective responses. Moreover, advancements in cybersecurity
protocols, such as encryption and blockchain, are now being
deployed to safeguard this sensitive information from unautho-
rized access, addressing one of the key concerns in the digital
transformation of healthcare. While the primary motivation for
these systems was to streamline data management, they have
also provided a foundation for the rapid scaling of telemedicine,
remote monitoring, and collaborative research across institu-
tions. This interconnectedness has expanded the boundaries of
healthcare, making it more global and accessible [4].

Behind these shifts is the recognition that healthcare systems
need to become more sustainable and cost-effective. The rise
in chronic diseases, aging populations, and the increasing com-
plexity of care have placed unsustainable pressures on health-
care budgets worldwide. Automation and Al-driven process
optimization have emerged as key solutions to reduce opera-
tional inefficiencies in hospitals and clinics. For example, ML
algorithms are now being used to predict patient admissions,
optimize staffing, and manage supply chains, ensuring that
healthcare providers can operate more efficiently. Initially, these
systems were adopted to tackle administrative challenges, but
they now extend into clinical workflows, where they assist in
tasks such as triage, risk assessment, and treatment planning.
As a result, digital transformation is not merely about adopting
new technologies but also about reimagining how healthcare
systems can be structured to deliver higher value at lower costs.

In the broader context, the impact of digital transformation
in healthcare extends beyond the confines of traditional medical
settings. The integration of Al, big data analytics, and connected
devices has also enabled breakthroughs in biomedical research
and drug discovery. High-throughput genomic sequencing, for
instance, generates enormous datasets that require advanced
algorithms for analysis. These computational techniques have
accelerated the identification of biomarkers for diseases such as
Alzheimer’s and certain cancers, facilitating the development of
more targeted therapies. Furthermore, Al-driven simulations of
protein folding and drug interactions have shortened the time
required for preclinical drug testing. Initially focused on improv-
ing patient care, digital transformation is now also redefining
the research.

The increasing availability of data within healthcare systems
has fundamentally transformed the way healthcare is delivered,
managed, and researched. Data availability in healthcare refers
to the degree to which health-related data, both clinical and op-
erational, is accessible to healthcare providers, researchers, and
patients. This data includes electronic health records (EHRs),
diagnostic imaging, laboratory results, genetic information, and
patient-generated health data from wearable devices and mo-
bile applications. Initially siloed in paper records or disparate
digital systems, healthcare data is now more accessible due to
the widespread adoption of digital health technologies. This
increased availability is pivotal in advancing clinical decision-
making, enabling more precise treatments, and enhancing the
efficiency of healthcare operations. The concept of data avail-
ability is central to the digital transformation of healthcare, as
it underpins innovations in personalized medicine, population
health management, and biomedical research.

Several fundamental components define data availability in
healthcare. The first and most essential component is electronic
health records (EHRs), which digitize patient information and
make it accessible across different healthcare providers and insti-
tutions. EHRs include structured data such as diagnostic codes,
lab results, and treatment histories, as well as unstructured data

like physician notes. In addition to EHRs, diagnostic imaging
systems, such as MRI and CT scans, provide vast amounts of
medical data, contributing to the diagnosis and management of
diseases. Genomic data represents another critical component
in the era of precision medicine, where genetic information is
used to tailor treatments to individual patients. Furthermore,
wearable devices and mobile health applications continuously
generate real-time data on vital signs, physical activity, and other
health metrics, extending data availability beyond the clinical
setting into the patient’s daily life. These diverse data sources
collectively form the core of healthcare data availability, driving
innovation and improving outcomes in both clinical practice
and medical research [5, 6].

One of the most significant benefits is its role in improving
clinical decision-making. When healthcare providers have ac-
cess to comprehensive, up-to-date patient data, they can make
more informed decisions regarding diagnosis and treatment.
This is critical in complex cases where historical data, labora-
tory results, and imaging studies must be integrated to create a
complete picture of the patient’s health. Additionally, data avail-
ability supports the development of evidence-based medicine,
as clinical decisions can be informed by data from large patient
populations, revealing trends and outcomes that may not be
apparent from individual cases. For instance, predictive analyt-
ics, fueled by large datasets, can help identify patients at risk
of complications or readmission, allowing for preemptive inter-
ventions. Thus, the widespread availability of healthcare data
directly enhances the quality of care provided to patients.

With access to comprehensive health data, including genetic
information, clinicians can tailor treatments to individual pa-
tients based on their unique genetic makeup, lifestyle, and med-
ical history. This approach contrasts with traditional one-size-
fits-all treatment models, where therapies are designed for the
average patient rather than the individual. For example, in
oncology, the availability of genetic data allows for the identifi-
cation of specific mutations driving a patient’s cancer, enabling
the use of targeted therapies that are more effective and have
fewer side effects. The availability of patient data thus plays a
key role in the shift toward more personalized, precise health-
care interventions, improving patient outcomes and reducing
unnecessary treatments.

Data availability also has profound implications for popu-
lation health management and public health. By aggregating
and analyzing data from large patient populations, healthcare
systems can identify trends in disease prevalence, treatment
outcomes, and healthcare utilization. This is useful in manag-
ing chronic diseases such as diabetes, cardiovascular diseases,
and asthma, where population-level data can inform strategies
for disease prevention, early intervention, and effective man-
agement. During public health crises, such as the COVID-19
pandemic, data availability enables real-time tracking of infec-
tion rates, hospitalizations, and resource utilization, helping
to inform public health policies and resource allocation. The
availability of data at the population level also facilitates health
disparities research, as it allows for the identification of gaps in
care among different demographic groups. As such, the avail-
ability of healthcare data is critical for improving public health
outcomes and achieving more equitable healthcare delivery.

Furthermore, the role of data availability extends into biomed-
ical research, where large datasets are essential for the discovery
of new treatments and therapies. In the past, clinical trials and
research studies were often limited by the availability of patient
data, leading to small sample sizes and less generalizable find-


https://researchberg.com/index.php/araic

ARAIC

Applied Research in Artificial Intelligence and Cloud Computing 81

ings. However, the increased availability of healthcare data, es-
pecially through large-scale data-sharing initiatives and research
consortia, has allowed researchers to access diverse datasets
from across institutions and geographical regions. This has led
to more robust and representative studies, accelerating the pace
of discovery in fields such as genomics, pharmacology, and epi-
demiology. For example, access to large genomic datasets has
enabled researchers to identify genetic variants associated with
diseases such as Alzheimer’s, opening new avenues for treat-
ment and prevention. Additionally, real-world data from clinical
practice can now be used to supplement traditional clinical trials,
offering observations into how treatments perform outside of
controlled research settings. The availability of healthcare data
is thus a driving force behind innovation in biomedical research
and the development of new therapies.

Several technical and environmental factors impede the ef-
fective collection, transmission, and accessibility of healthcare
data, leading to delays, data loss, and inaccuracies. This pa-
per discusses the complexities surrounding data availability in
healthcare, exploring the root causes of these challenges and
presenting a comprehensive analysis of both existing solutions
and potential new methodologies to overcome these barriers.

The objectives of this research are to (1) identify the major fac-
tors contributing to data availability challenges in healthcare, (2)
evaluate current solutions aimed at mitigating these challenges,
and (3) propose novel approaches to enhance data collection,
transmission, and availability in healthcare systems.

2. BARRIERS TO DATA AVAILABILITY

A. Device Malfunctions and Calibration Errors

Medical devices are integral to modern healthcare, forming the
backbone of data collection, monitoring, diagnosis, and treat-
ment processes. These devices, including patient monitors, infu-
sion pumps, and diagnostic imaging systems, generate critical
data that directly informs clinical decisions. However, these
devices are also susceptible to malfunctions hardware failures
and calibration errors, which can significantly compromise the
quality of the data they produce. When such malfunctions occur,
the resulting inaccuracies in the data can have severe conse-
quences, not only disrupting care but also potentially leading to
misdiagnoses or inappropriate treatment. As healthcare systems
increasingly rely on data-driven approaches, ensuring the relia-
bility and accuracy of the devices that collect and process this
data has become a critical challenge. Hardware failures and cali-
bration drift in medical devices represent significant risks to both
data integrity and patient outcomes, requiring careful attention
to device maintenance, calibration protocols, and technological
advancements.

One of the most pervasive challenges in medical device man-
agement is hardware failure, which is often the result of com-
ponent degradation over time. Medical devices operate in de-
manding environments, and continuous usage, combined with
exposure to varying environmental conditions, accelerates wear
and tear on both mechanical and electronic components. Devices
such as patient monitors, which are used to track essential phys-
iological parameters like heart rate, blood pressure, and oxygen
saturation in real time, are vulnerable. Continuous operation,
especially in critical care environments such as intensive care
units (ICUs), places considerable strain on these devices, leading
to component fatigue and eventual failure. For instance, sensor
misalignment, which can occur due to repeated use or mechan-
ical stress, often results in inaccurate readings. Initially, these

inaccuracies may go unnoticed, but over time, they can accumu-
late, leading to significant deviations in patient data. In extreme
cases, hardware failures such as complete device shutdowns can
lead to data loss or corruption, critically impairing the continuity
of care. These failures highlight the need for robust maintenance
protocols and the development of more resilient medical device
technologies that can withstand the rigors of continuous clinical
use.

Another significant issue associated with hardware malfunc-
tions in medical devices is related to diagnostic imaging systems,
such as MRI and CT scanners. These machines rely on precise
mechanical movements and sophisticated electronic systems to
generate high-resolution images used for diagnostic purposes.
Over time, the mechanical components of these machines, in-
cluding motors and cooling systems, can degrade, leading to
breakdowns or reduced functionality. For example, in MRI sys-
tems, the superconducting magnets that produce the magnetic
field required for imaging can lose their cooling efficiency, result-
ing in reduced image quality or even complete system failure.
Similarly, CT scanners, which use X-ray beams and detectors
to produce cross-sectional images, are vulnerable to failures in
the X-ray tube or detector array. Such hardware issues not only
interrupt the diagnostic process but also lead to the loss or degra-
dation of the diagnostic images produced, thereby limiting the
clinician’s ability to make informed treatment decisions. The
cost and complexity of repairing or replacing these high-tech
machines further exacerbate the issue, making it imperative
for healthcare providers to implement predictive maintenance
strategies to minimize the risk of failure [7].

In addition to hardware failures, calibration drift is another
critical issue affecting the accuracy of data collected by medical
devices. Many devices rely on sensors to measure physiological
parameters such as blood pressure, heart rate, oxygen saturation,
and glucose levels. These sensors are designed to provide precise
measurements, but over time, their accuracy can degrade due
to a phenomenon known as calibration drift. Calibration drift
occurs when the sensor’s reference point shifts away from its
original setting due to factors such as environmental exposure,
material degradation, or usage frequency. For example, a blood
pressure monitor may gradually provide readings that are either
higher or lower than the actual blood pressure due to drift in the
sensor’s calibration. In a clinical setting, even small inaccuracies
in these measurements can have significant consequences. In the
case of ICUs, where real-time monitoring of vital signs is critical,
calibration drift can lead to misinterpretations of a patient’s
condition, resulting in delayed or inappropriate interventions.
This issue underscores the importance of regular calibration
and maintenance of medical devices to ensure their continued
accuracy.

Sensor calibration is crucial in devices used for long-term
patient monitoring, such as glucose monitors and ventilators.
In glucose monitors, for instance, sensor drift can lead to incor-
rect blood sugar readings, which, if undetected, may result in
incorrect insulin dosing for diabetic patients. Similarly, ventila-
tors, which are used to support patients with respiratory failure,
rely on accurate sensors to monitor oxygen and carbon dioxide
levels in the blood. Any calibration drift in these sensors can
compromise the ventilator’s ability to deliver the appropriate
level of respiratory support, placing the patient at risk. The
accuracy of these devices is vital not only for immediate patient
care but also for long-term health management, especially in
patients with chronic conditions. The cumulative effect of sensor
drift across multiple devices and systems can lead to systemic


https://researchberg.com/index.php/araic

ARAIC ‘

Applied Research in Artificial Intelligence and Cloud Computing 82
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Fig. 2. Challenges of medical devices in data collection, including hardware failures and maintenance issues

Table 3. Common Hardware Failures in Medical Devices

Device

Type of Hardware Failure

Patient Monitors

Component fatigue leading to sensor misalignment, inaccurate readings,

or complete shutdown.

Infusion Pumps

Mechanical wear in pump components, causing interruptions or incorrect
delivery of fluids.

MRI Machines

Degradation of superconducting magnets or cooling systems, reducing
image quality or causing system failure.

CT Scanners

Failure of X-ray tubes or detector arrays, affecting imaging capabilities

and resulting in diagnostic errors.

Ventilators

Wear in motor components or sensor malfunctions, leading to incorrect
airflow or respiratory support.

inaccuracies in patient data, compounding the risk of medical
errors. Therefore, addressing calibration drift through regular
recalibration and advanced monitoring systems is essential for
maintaining the reliability of healthcare data [8].

The impact of hardware failures and calibration errors ex-
tends beyond individual patient care to broader healthcare oper-
ations and medical research. Inconsistent or inaccurate data can
skew clinical trials, disrupt the development of new treatments,
and invalidate research findings. For example, clinical trials that
rely on continuous glucose monitoring data must ensure that
the devices used are consistently accurate throughout the study
period. Calibration drift in such devices could lead to incorrect

data, affecting the trial’s outcomes and conclusions. Similarly,
large-scale population health studies that aggregate data from
multiple devices and sensors must account for potential inac-
curacies introduced by hardware failures or sensor drift. The
integrity of healthcare data is paramount not only for individual
patient outcomes but also for advancing medical knowledge and
improving public health interventions.

Furthermore, the increasing complexity of modern medical
devices has made detecting and addressing hardware failures
and calibration errors more challenging. Traditional methods
of maintenance, which rely on scheduled inspections and man-
ual recalibration, are often insufficient to address the real-time
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Table 4. Impact of Calibration Drift on Medical Devices

Device

Effect of Calibration Drift

Blood Pressure Monitors

Gradual shift in sensor reference point, leading to inaccurate blood pres-
sure readings and potential misdiagnosis.

Glucose Monitors

Drift in glucose sensor accuracy, resulting in incorrect blood sugar read-
ings and inappropriate insulin dosing.

Ventilators

Calibration drift in oxygen and carbon dioxide sensors, impairing the
ability to deliver proper respiratory support.

Patient Monitors

Misinterpretation of vital signs like heart rate or oxygen saturation due
to sensor drift, leading to inappropriate clinical interventions.

Diagnostic Imaging Systems

Calibration errors in imaging systems, reducing image resolution or
accuracy, affecting diagnostic decisions.

operational demands of these devices. For instance, scheduled
maintenance may not always catch early signs of wear in compo-
nents or detect gradual calibration drift, leading to undetected
failures that only become apparent when the device malfunc-
tions during patient use. Moreover, as medical devices become
more interconnected through digital health platforms and the
Internet of Medical Things (IoMT), the risk of device failures
affecting entire systems of care increases. A malfunction in one
device could propagate through a connected network, disrupt-
ing multiple aspects of patient care and data collection.

The complexity of modern medical devices also introduces
new challenges in managing calibration, especially as these de-
vices integrate more sophisticated algorithms for data collection
and analysis. For example, devices that use machine learning
algorithms to analyze physiological data require precise input
from sensors to function effectively. Calibration errors in the
sensors feeding data into these algorithms can lead to inaccu-
rate predictions or misclassifications, compounding the risk of
medical errors. The more advanced the device, the more critical
accurate calibration becomes, as even small errors can have cas-
cading effects on patient outcomes. This complexity highlights
the need for more advanced calibration techniques that can ac-
count for the multifactorial nature of sensor drift and hardware
degradation in modern medical devices.

In light of the challenges posed by hardware failures and cal-
ibration drift, it is increasingly evident that healthcare providers
must adopt more proactive approaches to device management.
Traditional reactive maintenance strategies, which involve re-
pairing or replacing devices only after they have failed, are no
longer sufficient in an era where data accuracy and reliability
are paramount. Instead, predictive maintenance models, driven
by machine learning and data analytics, offer a promising so-
lution. By analyzing historical performance data, these models
can predict when a device is likely to fail or experience calibra-
tion drift, allowing for preemptive interventions. For instance,
by continuously monitoring the performance of a diagnostic
imaging machine, predictive maintenance algorithms can detect
subtle changes in output quality that may indicate an impending
failure, prompting timely maintenance before the device breaks
down. Similarly, sensors equipped with real-time calibration
monitoring capabilities can detect drift as it occurs, automat-
ically adjusting their settings to maintain accuracy. These ad-
vancements represent a significant step forward in ensuring the
continuous reliability of medical devices in data-driven health-
care environments [9, 10].

Moreover, the integration of medical devices with IoMT plat-
forms allows for real-time monitoring of device status and per-
formance across healthcare networks. By connecting devices to a
centralized system, healthcare providers can receive immediate
alerts about hardware issues or calibration errors, enabling rapid
response to potential failures. This real-time connectivity not
only improves device management but also enhances patient
safety by ensuring that data inaccuracies are identified and cor-
rected as quickly as possible. In this way, [oMT platforms play a
critical role in supporting the long-term reliability of medical de-
vices, reducing the risk of data loss or corruption, and ultimately
improving clinical outcomes.

B. Authentication Failures and Security Bottlenecks

In healthcare environments, safeguarding access to sensitive
patient data is of utmost importance given the stringent require-
ments for confidentiality, integrity, and availability under reg-
ulatory frameworks such as HIPAA in the U.S. and GDPR in
Europe. Multi-factor authentication (MFA) is widely employed
as a mechanism to enhance security by requiring multiple layers
of user verification, such as a password combined with a one-
time code or biometric data, to access electronic health records
(EHRs) and other healthcare systems. While MFA offers en-
hanced security, it introduces significant challenges in terms of
data availability, especially in clinical settings where rapid access
to information is critical. In emergency situations, delays caused
by authentication failures—due to incorrect credentials, latency
in the delivery of one-time passwords, or system errors—can
impede the timely retrieval of patient records. These bottlenecks
are problematic in intensive care units (ICUs) and emergency
rooms (ERs), where clinicians depend on immediate access to
real-time patient data to inform critical decisions. Therefore,
although MFA strengthens security against unauthorized access,
its operational impact on healthcare workflows in high-stress
and high-stakes environments, necessitates a balance between
security and accessibility to ensure that patient care is not com-
promised by technological delays.

The growing reliance on interconnected healthcare systems
and digital platforms has simultaneously increased their vul-
nerability to cybersecurity threats, posing significant risks to
data availability and integrity. Healthcare data, which is often
more lucrative than other types of data on the black market,
is a prime target for a variety of cyberattacks, including ran-
somware, phishing schemes, and distributed denial-of-service
(DDoS) attacks. In a ransomware attack, for example, healthcare
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Challenge

Impact on Data Availability

Proposed Solution

Multi-Factor Authentication
(MFA) Bottlenecks

Delays in accessing patient data, especially
in emergency situations due to credential
errors or OTP delays.

Biometric authentication for faster, secure
access to data without the need for sec-
ondary verification.

Ransomware Attacks

Patient data becomes inaccessible until ran-
som is paid, disrupting entire healthcare op-
erations.

Blockchain-based access control to create
tamper-resistant and decentralized data
management systems.

Distributed Denial-of-
Service (DDoS) Attacks

Overwhelms network infrastructure, pre-
venting access to real-time monitoring sys-
tems and patient data.

Network segmentation to isolate critical
healthcare systems from other vulnerable
segments of the network.

Table 6. Advanced Technologies for Enhancing Healthcare Data Security and Availability

Technology

Functionality

Benefit

Biometric Authentication

Uses unique physical traits such as finger-
prints or iris scans for secure access.

Reduces authentication delays, ensuring
fast and secure access to patient data in crit-
ical settings.

Blockchain-Based
Control

Access

Decentralizes data management with an im-
mutable, cryptographically secured ledger.

Ensures secure, transparent access logs
while preventing unauthorized data tam-
pering or deletion.

Al-Driven Intrusion Detec-
tion Systems (IDS)

Continuously monitors network traffic for
abnormal patterns indicative of a cyberat-
tack.

Detects and mitigates threats in real-time,
minimizing data breaches and service dis-
ruptions.
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systems can be locked down until a ransom is paid, effectively
rendering patient data inaccessible to healthcare providers. Such
attacks have not only increased in frequency but also in sophisti-
cation, often targeting weak points in network infrastructures,
such as outdated software, unpatched systems, or inadequately
trained staff. DDoS attacks, on the other hand, can overwhelm
a healthcare system’s network infrastructure, preventing data
transmission and crippling access to real-time monitoring sys-
tems. The disruption of data availability in these scenarios ex-
tends beyond individual records and can halt entire healthcare
operations, compromising not only administrative functions but
also critical care systems, such as real-time patient monitoring
and telemedicine platforms. The increasing volume and sophisti-
cation of these cybersecurity threats underscore the urgent need
for enhanced security protocols that protect data without sac-
rificing availability, especially in contexts where uninterrupted
data flow is vital for patient outcomes [9, 11].

In light of the complexities posed by both MFA-related bottle-
necks and escalating cybersecurity threats, advanced solutions
are needed to maintain the delicate balance between security
and data accessibility in healthcare. Biometric authentication,
which leverages unique physical characteristics such as finger-
prints, iris scans, or facial recognition, offers a more efficient
and reliable alternative to traditional MFA methods. Biometric
systems are not only faster but also eliminate the need for sec-
ondary authentication factors like one-time passwords, thereby
reducing the time required to access patient data in critical situa-
tions. These systems can be seamlessly integrated into existing
healthcare workflows, providing clinicians with secure yet in-
stantaneous access to EHRs without the delays associated with
traditional MFA. Additionally, biometric data, being highly indi-
vidualized, is less susceptible to common hacking techniques,
further enhancing system security.

Blockchain technology also holds promise for addressing
both security and accessibility challenges in healthcare data
management. By utilizing blockchain for access control, health-
care systems can leverage its decentralized architecture and
immutable ledger to create tamper-resistant audit trails of data
access. In a blockchain-based access control system, each trans-
action or data access event is recorded in a distributed ledger
that is cryptographically secured, making it nearly impossible
for unauthorized users to manipulate or delete records. This
ensures that patient data remains secure while maintaining a
transparent log of who accessed what information and when.
Blockchain’s ability to operate in a decentralized fashion also mit-
igates the risk of single points of failure, which are common in
centralized healthcare systems. Furthermore, by decentralizing
authentication processes, blockchain can help prevent system-
wide shutdowns caused by cyberattacks, such as DDoS attacks,
thereby maintaining data availability even in the face of security
threats [12].

To further mitigate cybersecurity risks, healthcare institutions
should consider adopting network segmentation and zero-trust
security architectures. Network segmentation involves dividing
a healthcare system’s network into isolated segments, each with
its own access controls and security measures. This limits the
spread of cyberattacks by ensuring that even if one segment is
compromised, attackers cannot easily move laterally across the
network to access other critical systems or data. For example, a
DDoS attack aimed at a hospital’s administrative network would
be isolated from the network responsible for real-time patient
monitoring, ensuring that critical medical services remain unaf-
fected. Zero-trust security architecture, which operates on the

principle of "never trust, always verify," requires continuous ver-
ification of both users and devices attempting to access network
resources. This approach further enhances security by ensuring
that no user or device is automatically trusted, even if they are
inside the network perimeter, thus providing an additional layer
of protection against internal and external threats.

Real-time intrusion detection systems (IDS), powered by arti-
ficial intelligence (AI), represent another key strategy for bolster-
ing cybersecurity in healthcare. Al-driven IDS can continuously
monitor network traffic, detecting abnormal patterns that may
indicate an ongoing cyberattack or unauthorized access attempt.
By analyzing large volumes of network data in real-time, these
systems can identify potential threats before they escalate into
full-scale security breaches. For example, Al-powered IDS can
detect unusual traffic spikes or anomalies in user behavior, such
as a healthcare provider accessing patient data outside of normal
working hours or from an unusual location. Upon detecting such
anomalies, the system can automatically trigger alerts or initiate
defensive measures, such as isolating compromised network
segments or blocking suspicious IP addresses. This proactive
approach to cybersecurity allows healthcare IT teams to respond
swiftly to emerging threats, thereby minimizing the risk of data
loss or service disruptions [13, 14].

C. Environmental and Infrastructural Constraints

Data transmission is fundamental to the seamless operation of
modern healthcare systems, especially as the reliance on inter-
connected devices and real-time patient monitoring increases.
However, healthcare networks, which include both wired and
wireless infrastructures, often experience instability that can
undermine the availability and accuracy of critical data. In en-
vironments with high patient volumes, such as large hospitals,
the bandwidth required to transmit data from multiple devices
simultaneously can become strained, resulting in slow or failed
transmissions. Wireless networks are vulnerable to these issues,
as they operate in high-density areas that are often subject to
electromagnetic interference (EMI) from other medical and non-
medical electronic devices. This interference can disrupt signal
integrity, leading to packet loss or transmission errors, which
ultimately impede the real-time availability of patient data. The
accumulation of these disruptions across a healthcare system can
create significant delays in data access, complicating the clinical
decision-making process in settings that depend on immedi-
ate data for treatment, such as emergency rooms or operating
theaters.

Beyond network instability, the transmission of healthcare
data is critically dependent on a reliable and continuous power
supply, a requirement that is not always guaranteed in regions
with unstable electricity grids or frequent power disruptions.
Power outages, whether caused by natural disasters, infrastruc-
ture failures, or local grid instability, can have catastrophic effects
on the availability of healthcare data. In developed healthcare
systems, even brief power interruptions can result in the loss
of access to electronic health records (EHRs) or real-time pa-
tient monitoring systems, which can disrupt hospital operations
and jeopardize patient safety. For instance, a power outage
in an ICU could interrupt the monitoring of critical life signs,
while in less-developed regions with unreliable power grids,
prolonged outages may lead to the complete cessation of elec-
tronic data collection and transmission. Without robust backup
power systems, healthcare facilities are left vulnerable to data
unavailability during emergencies, emphasizing the importance
of a stable and sustainable power infrastructure in maintaining
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Natural Disasters

Challenge

Cause

Impact on Data Availability

Network Instability

High patient volumes, electromagnetic in-
terference (EMI), and limited bandwidth in
wired and wireless networks.

Slow or failed transmissions, packet loss,
and delays in real-time patient monitoring
data, complicating clinical decision-making.

Power Supply Disruptions

Unreliable electricity grids, natural disas-
ters, or infrastructure failures.

Interruptions in accessing EHRs, real-time
monitoring systems, and other critical
healthcare data during emergencies.

Table 8. Technological Solutions for Healthcare Data Transmission Challenges

Technology

Functionality

Benefit to Data Availability

Multipath Transmission Con-

Transmits data across multiple network

Increases network redundancy, ensuring

reducing dependency on centralized cloud-
based systems.

trol Protocol (MPTCP) paths, rerouting around congestion or fail- | continuous data transmission even during
ures. network instability.
Edge Computing Processes data locally at the device level, | Minimizes latency and ensures real-time

data availability, even during network out-
ages.

Uninterruptible Power Sup-
ply (UPS)

Provides immediate power continuity dur-
ing short-term outages.

Maintains access to critical data systems
during brief power interruptions, safe-
guarding real-time monitoring and EHRs.

Solar-Powered Backup Sys-
tems

Utilizes renewable energy for long-term
power supply during extended outages.

Ensures continuous power for essential data
systems during prolonged grid failures, es-
pecially in regions with unreliable electric-

ity.

continuous healthcare data access [15].

The challenges posed by both network instability and power
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disruptions necessitate the development and deployment of ad-
vanced technological solutions that can mitigate these risks and
ensure the reliability of healthcare data systems. One promising
approach to addressing network reliability issues is the adoption
of Multipath Transmission Control Protocol (MPTCP), which
enables data to be transmitted simultaneously across multiple
network paths. By leveraging multiple communication routes,
MPTCP can reroute data in real-time if one network link ex-
periences congestion, instability, or failure. For example, in a
hospital environment where Wi-Fi may be subject to interference
or overload, MPTCP can dynamically switch between wired
Ethernet connections, cellular networks, or alternative wireless
channels, ensuring that data transmission continues without
interruption. This redundancy in network pathways not only
improves the robustness of data transmission but also enhances
the overall resilience of the healthcare network, reducing the
impact of localized failures on system-wide data availability.

In addition to MPTCP, edge computing represents a critical
innovation in reducing the dependency on centralized, cloud-
based systems that are prone to latency and network instability.
Edge computing enables data to be processed locally at the
device level, rather than transmitting raw data to distant servers
for processing. This local processing reduces the amount of data
that must traverse potentially unreliable networks, minimizing
latency and ensuring that critical information is available in real-
time. For instance, in a surgical suite, medical devices equipped
with edge computing capabilities can process and analyze vital
signs data on-site, providing surgeons with real-time feedback
without relying on external network connectivity. The ability to
process data locally also provides a safeguard against temporary
network outages, allowing healthcare providers to continue
accessing vital information even if external connections are lost.
By decentralizing data processing, edge computing not only
enhances the availability of real-time healthcare data but also
improves the overall efficiency and speed of healthcare delivery
systems.

Power supply disruptions, another major threat to health-
care data availability, can be effectively mitigated through the
deployment of uninterruptible power supplies (UPS) and solar-
powered backup systems. UPS systems provide immediate
power continuity in the event of a grid failure, ensuring that
critical systems, including EHR databases, monitoring devices,
and communication networks, remain operational during short-
term outages. UPS units are important in critical care areas such
as ICUs and surgical suites, where even brief power interrup-
tions can have life-threatening consequences. For longer-term
power outages, such as those caused by severe weather events
or infrastructure failures, solar-powered backup systems offer
a sustainable solution. By harnessing renewable energy, health-
care facilities can maintain power for essential data systems over
extended periods without relying solely on traditional electri-
cal grids. Solar power solutions, when integrated with energy
storage systems, can provide continuous electricity for critical
data infrastructure, ensuring that healthcare operations are not
disrupted during extended power outages. This is especially im-
portant in regions with unreliable grid power, where alternative
energy sources can help bridge the gap between intermittent
grid failures and the sustained operation of healthcare systems
[15].

3. ENHANCING DATA COLLECTION, TRANSMISSION,
AND AVAILABILITY: STRATEGIES

A. Advanced Data Transmission Protocols

The rapid growth of healthcare data, driven by advancements
in medical devices, diagnostic imaging, and real-time patient
monitoring, has placed significant demands on data transmis-
sion protocols. Traditional protocols like Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) are widely
used but struggle to meet the specific needs of healthcare ap-
plications in environments requiring real-time data flow. TCP,
while reliable due to its built-in mechanisms for error correction
and data integrity checks, introduces significant latency. This
latency can be problematic in time-sensitive healthcare scenarios,
such as remote patient monitoring or telemedicine, where data
must be transmitted and processed in real-time. Conversely,
UDP offers lower latency by foregoing error-checking processes,
but its lack of reliability and susceptibility to data loss make it
unsuitable for critical healthcare data transmission. In complex
healthcare environments where both reliability and speed are es-
sential, these traditional protocols fall short, necessitating more
advanced and adaptive solutions [14, 16].

Multipath Transmission Control Protocol (MPTCP) offers a
sophisticated solution to the limitations of standard TCP by en-
abling the simultaneous transmission of data across multiple
network interfaces, including Wi-Fi, cellular networks, and Eth-
ernet. Unlike traditional TCP, which relies on a single path for
data transmission, MPTCP distributes data packets across sev-
eral pathways. This multipath approach introduces a level of
redundancy and resilience that is advantageous in healthcare
settings. For example, in a hospital where a patient’s condi-
tion is being monitored in real-time, MPTCP can ensure that
data from patient monitors, diagnostic imaging equipment, and
electronic health records (EHRs) are transmitted without inter-
ruption, even if one network interface becomes unreliable or
fails. The protocol can dynamically switch between network
connections, rerouting data to alternative paths if one link ex-
periences congestion or breakdown. This is especially useful
in high-bandwidth environments where multiple data streams,
such as real-time physiological monitoring, large diagnostic
images, and medical history records, must be transmitted simul-
taneously. By leveraging multiple network interfaces, MPTCP
not only enhances the reliability of healthcare data transmission
but also reduces the risk of service disruption, ensuring that
critical patient data remains accessible in real-time [17].

In addition to managing network instability, MPTCP also
improves bandwidth utilization by allowing healthcare systems
to make use of all available network resources. For instance,
a healthcare facility equipped with both a high-speed Ether-
net connection and a 5G cellular network can use MPTCP to
distribute the data load between these networks, optimizing per-
formance. This is beneficial in telemedicine applications, where
high-definition video consultations, diagnostic image sharing,
and real-time monitoring data must be transmitted simultane-
ously. MPTCP can balance the traffic between different network
types, ensuring that high-priority data streams, such as live
video or urgent diagnostic images, are transmitted through the
fastest and most reliable connection. In doing so, MPTCP miti-
gates the bottlenecks that are often encountered with single-path
transmission protocols, thus facilitating a more seamless and
responsive healthcare delivery system.

Another significant challenge in healthcare data transmis-
sion is the need to balance security with performance. Data
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Protocol

Strengths

Weaknesses

Transmission Control Proto-
col (TCP)

Reliable data transmission with error check-
ing and retransmission of lost packets.

Introduces latency due to error-checking
mechanisms, which can delay real-time ap-
plications such as remote patient monitor-
ing.

User
(UDP)

Datagram Protocol

Faster transmission, with low latency suit-
able for time-sensitive applications.

Lacks reliability and error-checking, making
it prone to data loss, which can compromise
the integrity of healthcare data.

Multipath Transmission Con-
trol Protocol (MPTCP)

Concurrent data transmission across multi-
ple network interfaces (e.g., Wi-Fi, cellular,
Ethernet), enhancing redundancy and re-
silience.

Increased complexity in implementation
and management; higher resource require-
ments compared to traditional TCP/UDP
protocols.

Table 10. Lightweight Encryption Algorithms for Healthcare Data Transmission

Algorithm

Description

Benefit to Healthcare Data Transmission

Elliptic Curve Cryptography
(ECCQ)

Provides strong encryption with a smaller
key size compared to traditional algorithms
like RSA.

Reduces computational overhead, enabling
faster transmission of healthcare data with-
out compromising security.

Advanced Encryption Stan-
dard (AES) (Lightweight Ver-

Symmetric encryption algorithm with a fo-
cus on performance in constrained environ-

Offers efficient encryption for large vol-
umes of data, such as diagnostic images and

sion) ments.

EHRs, with minimal impact on transmis-
sion speed.

Lightweight Cryptography
(LWC) Standards (NIST)
as medical IoT devices.

Cryptography standards tailored for de-
vices with limited processing power, such

Enhances security for real-time monitoring
systems while minimizing energy consump-
tion and latency.

encryption is vital for protecting patient privacy and complying
with regulations like HIPAA, but encryption processes can in-
troduce latency, especially when large volumes of data must be
encrypted and transmitted in real-time. This latency becomes
problematic in scenarios like remote surgery or ICU monitoring,
where even small delays in data transmission can have critical
consequences. To address this issue, lightweight encryption
algorithms offer a promising solution by providing strong secu-
rity without the heavy computational overhead of traditional
encryption techniques. One such algorithm, Elliptic Curve Cryp-
tography (ECC), is gaining attention for its ability to deliver
robust encryption with significantly reduced resource require-
ments compared to older methods like RSA.

ECC operates by using smaller key sizes to achieve the same
level of security as other encryption algorithms with larger keys,
such as RSA. For instance, a 256-bit key in ECC provides equiv-
alent security to a 3072-bit RSA key, but requires far less com-
putational power. This reduced computational demand trans-
lates into faster encryption and decryption timesobservations in
healthcare systems that handle high volumes of sensitive data.
By implementing ECC, healthcare providers can secure patient
data—such as EHRs, diagnostic images, and real-time monitor-
ing data—without introducing the latency typically associated
with traditional encryption methods. Moreover, ECC’s efficiency
makes it ideal for deployment in resource-constrained environ-
ments, such as mobile health applications and wearable medical
devices, where processing power and battery life are limited.

The benefits of lightweight encryption extend beyond just per-

formance gains. By reducing the computational load required for
securing data, lightweight encryption algorithms also enhance
the scalability of healthcare systems. In modern healthcare envi-
ronments, where an increasing number of devices are connected
to the Internet of Medical Things (IoMT), encryption must be
applied across a wide array of systems, from high-powered
servers to low-power wearable devices. The reduced overhead
of lightweight encryption allows healthcare systems to scale up
their data security measures without overburdening network
infrastructure or individual devices. For example, in a large hos-
pital system where thousands of devices—ranging from patient
monitors to mobile health apps—are transmitting sensitive data,
ECC can ensure that all data remains secure without compro-
mising network performance. This scalability is important in
the context of expanding telemedicine services, where patient
data must be transmitted securely across disparate networks
and devices, often in real-time.

B. Predictive Maintenance and Real-Time Calibration

Predictive maintenance in medical devices represents a shift
from reactive to proactive management, aiming to minimize un-
expected failures by using advanced machine learning (ML) tech-
niques to predict when a device is likely to fail. These systems
analyze continuous streams of operational data from devices like
MRI machines, infusion pumps, or patient monitors, and apply
predictive models that identify patterns indicative of future mal-
functions. Predictive maintenance relies on the decomposition
and analysis of high-dimensional data collected from medical de-
vices. Each device produces multivariate time-series data—such
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as temperature, vibration, or electrical output—captured over
time. These data points can be represented in matrix form, en-
abling the application of linear algebra techniques to discern
patterns and identify anomalies.

Let X € R™*™ represent the multivariate time-series data
collected from m sensors over n time intervals, where each row
of the matrix represents the state of the device at a given time ¢,
and each column corresponds to a different sensor reading (e.g.,
temperature, pressure, vibration). In predictive maintenance,
the objective is to detect abnormal trends that could signal an
impending failure. A typical approach might involve Principal
Component Analysis (PCA), which reduces the dimensionality
of the data and isolates the most significant patterns.

The data matrix X is centered by subtracting the mean of each
column, resulting in a matrix X ,¢ereg. The covariance matrix
Y € R™ ™ is then computed as:

1 or
r= n—1 Xcenteredxcenten’d
The eigenvalues A; and eigenvectors v; of ¥ are then computed
to identify the principal components:

Zvi = Aiv,-

The largest eigenvalues correspond to the directions in which
the data varies the most, and by projecting the original data
onto the eigenvectors, we can reduce the dimensionality while
preserving the most significant patterns:

Y = XeenteredV

where V is the matrix of selected eigenvectors, and Y represents
the projection of the original data into the reduced space. In this
reduced space, predictive algorithms can more easily identify
anomalies—deviations from normal operational patterns—that
signal potential device failure. For instance, if an eigenvalue
starts to shift in an unexpected direction, it may indicate that
the device’s performance is drifting away from its normal range,
requiring maintenance.

Support Vector Machines (SVMs) can also be used to classify
device states based on sensor data. SVMs construct a hyper-
plane in a high-dimensional space that separates normal device

behavior from faulty behavior. The decision boundary in SVMs
is defined by:
wlx+b=0

where w € R™ is the weight vector, x € R" is the feature
vector (sensor readings), and b is the bias term. The goal of the
SVM algorithm is to find the optimal hyperplane that maximizes
the margin between the two classes (normal and faulty device
behavior):

1
mi;l EHwHZ subject to  y;(wlx; +b) >1,Vi
w,

where y; € {—1,1} are the class labels for normal or faulty states.
When a device’s state vector x approaches the boundary defined
by the hyperplane, the SVM can predict an imminent failure,
triggering preemptive maintenance actions.

In parallel with predictive maintenance, real-time calibration
systems play a vital role in ensuring the accuracy of data col-
lected by medical devices. Many medical devices, especially
those equipped with sensors for monitoring physiological pa-
rameters, suffer from calibration drift due to environmental
conditions such as temperature, humidity, and vibration. To ad-
dress this, self-learning calibration algorithms are implemented,
which continuously adjust sensor readings to reflect real-time
operating conditions.

Let y(t) represent the raw sensor measurement at time £, and
f(t) represent the environmental condition (e.g., temperature)
influencing the measurement. The true value z() of the physio-
logical parameter can be modeled as:

z(t) = y(t) + Bf(#)

where B is a coefficient that captures the sensor’s sensitivity
to the environmental factor. In a real-time calibration system,
machine learning algorithms continuously estimate 8 based on
historical data and current measurements, allowing the device
to adjust its readings dynamically:

n
Bt) = argmin Y (y(t) + Bf(t) —2(8:)
i=1
where fB(t) is the estimated coefficient at time t, and the min-

imization problem is solved using least squares regression to
minimize the calibration error over n time points.
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To enhance accuracy, Kalman filters can be employed to re-
fine the estimation of sensor drift in real-time. The Kalman filter
recursively estimates the state of a dynamic system by combin-
ing noisy measurements with a prediction of the system’s state.
For sensor calibration, the filter updates the estimated true value
2(t) based on the noisy measurement y(¢) and the estimated
drift correction B(t) f(t):

2(t) = 2(t = 1) + K(t) (y(t) — (2(t = 1) + (D f (1))

where K(t) is the Kalman gain, which optimally balances the
influence of new measurements against prior estimates.

In practice, these real-time calibration systems ensure that
devices, such as wearable health monitors or diagnostic tools,
continuously recalibrate themselves in response to environmen-
tal changes. For instance, a wearable health monitor might ad-
just its sensor readings as a patient moves from a cooler indoor
environment to a warmer outdoor one, ensuring that physiolog-
ical measurements, such as heart rate and blood oxygen levels,
remain accurate and reliable regardless of external conditions.

C. Blockchain-Driven Authentication and Data Integrity

Healthcare systems increasingly rely on technology to manage
and share sensitive patient data, but the vulnerability of central-
ized databases has exposed these systems to serious cyberse-
curity threats. Traditional models, which store data in a single
location, create a single point of failure, meaning that if this
central hub is compromised, the entire network’s security can
collapse. Centralized control points are attractive targets for
hackers because they hold the keys to vast amounts of personal
and medical information. Blockchain’s decentralized nature
offers a promising solution. Instead of relying on a single au-
thority, it spreads control across a network of computers, or
nodes, ensuring that no single entity is responsible for the sys-
tem’s security. This decentralized structure makes blockchain
more resilient to attacks and enhances the security of healthcare
data by removing the vulnerabilities associated with centralized
systems.

Every time a healthcare provider or administrator needs to
access patient information, their identity must be verified. In
conventional systems, this verification depends on a central
server that validates access credentials. However, the reliance
on centralized authentication mechanisms introduces the risk of
cyberattacks, where unauthorized users can exploit weaknesses
to gain access. Blockchain uses a consensus mechanism to verify
users’ identities, which distributes the task of authentication
across multiple nodes. Different consensus protocols, such as
proof-of-work or proof-of-stake, ensure that any request for data
access is validated by the majority of participants in the network.
As a result, the integrity of the authentication process is pre-
served without the need for a central control point, reducing the
system’s exposure to attacks and increasing overall security. This
decentralized verification model makes it difficult for malicious
actors to manipulate or bypass the system.

Patient records often need to be shared across different health-
care providers, from hospitals and clinics to labs and insurance
companies. In such complex environments, ensuring that patient
data remains accurate and unaltered is a significant challenge.
As data moves between institutions, it is vulnerable to tamper-
ing, and discrepancies between versions can arise. Blockchain’s
immutability ensures that once data is written into the ledger,
it cannot be altered or deleted. Each time a patient record is
accessed or modified, the change is permanently recorded as

a new entry on the blockchain. This creates an auditable and
transparent history of all interactions with the data. By tracking
every change in a tamper-proof ledger, blockchain preserves
data integrity, making it suited for environments where trust
and accurate record-keeping are essential. As a result, healthcare
organizations can trust that the data they access is complete and
has not been corrupted by unauthorized changes.

Automating access to healthcare data is another critical need,
especially in settings where different levels of permissions are re-
quired based on the user’s role. For example, a doctor may need
full access to a patient’s medical history, while a billing adminis-
trator might only need to see specific insurance information. In
traditional systems, these access permissions are managed man-
ually, which can lead to delays or errors. Blockchain employs
smart contracts, which are self-executing programs that auto-
matically enforce rules based on predefined conditions. These
contracts allow healthcare organizations to set up precise criteria
for who can access specific types of data and under what cir-
cumstances. Once these conditions are met, the smart contract
automatically grants or denies access without human interven-
tion. This not only streamlines operations but also ensures that
sensitive data is only available to those with the appropriate
permissions, reducing the risk of unauthorized access. The au-
tomation provided by smart contracts enhances both the security
and efficiency of healthcare data management.

Scalability is a pressing concern for any technology seeking
to manage the vast amounts of data generated in healthcare.
Electronic health records, diagnostic images, and genomic data
can quickly overwhelm traditional blockchain networks those
that use consensus mechanisms like proof-of-work, which are
slow and resource-intensive. As healthcare data volumes grow,
the need for faster and more efficient processing becomes critical.
Solutions such as layer-2 scaling techniques and sharding have
been developed to address these issues. Layer-2 solutions move
some transactions off the main blockchain, reducing congestion
and improving performance. Sharding, by contrast, breaks the
blockchain into smaller parts, or shards, that can process trans-
actions in parallel. Both of these innovations help blockchain
systems handle the massive amounts of healthcare data while
maintaining high levels of security and integrity.

Healthcare data is often stored in various formats across dif-
ferent platforms, and exchanging information between systems
that are not designed to be compatible presents significant chal-
lenges. When patient data is transferred from one institution to
another, it must be translated into a format that the receiving
system can understand. Blockchain alone does not solve this
problem. To achieve seamless data sharing, blockchain must
be combined with interoperability standards, such as the Fast
Healthcare Interoperability Resources (FHIR) standard. FHIR
provides a common framework for exchanging healthcare data
electronically, allowing blockchain to function as a secure, decen-
tralized platform while ensuring that all parties can access the
information in a consistent format. By integrating blockchain
with these interoperability standards, healthcare organizations
can improve data exchange between providers, enhancing pa-
tient care by ensuring that accurate, up-to-date information is
always available when needed.

Maintaining patient privacy is a central concern in healthcare
as data sharing becomes more common. While blockchain is
often celebrated for its transparency, this feature can be prob-
lematic when dealing with sensitive medical records. Pub-
lic blockchains, where all participants can see every transac-
tion, pose a risk to patient privacy. Techniques such as zero-
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knowledge proofs (ZKPs) offer a potential solution. ZKPs allow
one party to prove that they have certain information without re-
vealing the details of that information. In healthcare, ZKPs could
be used to verify a user’s authorization to access specific data
without exposing the actual data itself. This approach would al-
low healthcare providers to meet stringent privacy requirements
while still leveraging the benefits of blockchain technology. As
cryptographic techniques like ZKPs become more advanced,
they will play an increasingly important role in ensuring that
healthcare data remains private and secure.

4. CONCLUSION

Medical devices, such as infusion pumps and diagnostic imag-
ing machines, are essential for healthcare data collection, yet
they often experience operational failures. Over time, hard-
ware components wear out, sensors become misaligned, and
inadequate maintenance accelerates device degradation. These
malfunctions can range from minor disruptions, such as erro-
neous sensor readings, to severe failures, including complete
shutdowns, leading to significant data loss or corruption. With-
out reliable devices, the accuracy and availability of patient data
are compromised, which can disrupt clinical workflows. To mit-
igate these risks, employing real-time diagnostic systems and
predictive maintenance models is crucial. These innovations al-
low healthcare providers to detect potential failures before they
happen, ensuring continuous data availability and improving
overall system reliability.

Accurate data collection depends heavily on sensor perfor-
mance in medical devices. However, sensors are prone to cal-
ibration drift due to environmental factors, frequent use, and
material degradation. In intensive care units, where real-time
monitoring of vital signs like heart rate and oxygen saturation
is critical, even small inaccuracies can lead to serious conse-
quences. This drift occurs gradually, causing sensors to report
inaccurate data if not addressed. To combat this issue, modern
sensor systems are being designed with self-calibration capabili-
ties powered by Al algorithms. These systems can automatically

adjust to changing conditions, reducing the likelihood of inaccu-
rate readings and maintaining high data accuracy. By combining
these sensors with IoMT platforms, healthcare providers can
monitor device performance in real time and receive alerts about
calibration issues, facilitating immediate corrective action.

Authentication mechanisms, such as multi-factor authenti-
cation (MFA), are essential for securing access to healthcare
systems. However, delays often occur when healthcare profes-
sionals need urgent access to patient records in emergencies.
When credentials are entered incorrectly, or when secondary au-
thentication factors—such as one-time passwords—fail, access
to critical patient data can be delayed, hindering timely care.
These challenges not only slow down workflows but can also
lead to potentially life-threatening delays in patient treatment.
To address this, the implementation of biometric authentication
systems offers a faster and more seamless solution. By relying
on fingerprints, facial recognition, or iris scans, these systems
provide both security and speed, reducing the bottlenecks that
traditional MFA systems often create.

Cybersecurity threats further compound the problem of data
availability in healthcare. Increasingly, healthcare systems are
targeted by ransomware, phishing, and distributed denial-of-
service (DDoS) attacks. These threats compromise the integrity
of healthcare data, sometimes rendering it inaccessible for ex-
tended periods while systems are restored or re-secured. Attacks
can overwhelm network infrastructure, temporarily shutting
down access to real-time data, such as electronic health records
(EHRs), which are crucial for continuous patient care. This
growing wave of cyberattacks poses a major risk to both data
security and availability. In response, healthcare organizations
are adopting advanced security frameworks, including network
segmentation and zero-trust architectures. By isolating sensitive
data systems from general network traffic, these solutions limit
the potential damage from an attack, ensuring critical healthcare
systems remain functional even under threat.

Data transmission in healthcare environments often encoun-
ters network instability and latency in settings with high patient
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volumes. In large hospitals, both wired and wireless networks
are susceptible to overload, and electromagnetic interference
(EMI) from medical devices can exacerbate these issues, leading
to packet loss and data transmission errors. Network instability
can severely impair the real-time availability of patient data for
remote patient monitoring or data-intensive applications like
diagnostic imaging. In such conditions, vital data may not reach
healthcare providers in time to inform critical decisions. To en-
hance network reliability and reduce latency, Multipath TCP
(MPTCP) offers a solution by allowing data to be transmitted
over multiple network paths simultaneously. This protocol en-
sures that if one network fails or becomes congested, the data
can still be transmitted via an alternative route, maintaining the
availability of healthcare data in real time.

Power supply issues present another threat to healthcare
data availability, especially in regions with unstable electricity
grids. Even in developed systems, natural disasters or infrastruc-
ture failures can lead to sudden power outages, halting access
to EHRs and other critical data systems. Without adequate
backup power solutions, healthcare facilities risk losing access
to essential patient data at crucial moments. In response, the
implementation of uninterruptible power supplies (UPS) and
solar-powered backup systems is becoming an increasingly nec-
essary safeguard. Solar energy solutions, in particular, provide
a reliable and sustainable source of backup power, ensuring that
healthcare devices and data systems remain operational even
during extended outages, thereby securing uninterrupted access
to vital healthcare data.

In handling the large volumes of healthcare data generated by
modern medical devices, traditional data transmission protocols
often struggle to keep pace. Protocols like TCP, though reliable,
introduce significant latency due to error-checking mechanisms,
while faster protocols like UDP are prone to data loss, especially
in real-time monitoring situations. The demands of real-time
healthcare data, including remote patient monitoring and the
transmission of high-resolution diagnostic images, can over-
whelm these older systems. To improve data transmission relia-
bility and reduce latency, Multipath Transmission Control Proto-
col (MPTCP) enables the use of multiple network interfaces, such
as Wi-Fi, Ethernet, and cellular networks, simultaneously. This
approach ensures continuous data flow, even in high-bandwidth
healthcare environments, by dynamically routing traffic across
multiple networks, preventing data loss or delays.

The encryption of healthcare data is another significant chal-
lenge. Although encryption is critical for protecting patient
privacy, traditional encryption algorithms can introduce latency,
especially when handling large volumes of data. This latency
impacts real-time applications, where rapid data processing is
essential. By employing lightweight encryption algorithms, such
as Elliptic Curve Cryptography (ECC), healthcare systems can
balance security with performance. These algorithms provide
strong encryption with less computational overhead, ensuring
faster data transmission while maintaining high levels of data
protection observations for both patient privacy and the efficient
operation of healthcare systems.

Medical device malfunctions remain a key contributor to data
availability issues in healthcare. Devices frequently fail with-
out warning, compromising data integrity and delaying critical
treatment decisions. However, advancements in Al and machine
learning have made predictive maintenance a viable solution for
this problem. By analyzing device usage patterns and environ-
mental factors, predictive maintenance systems can forecast po-
tential failures before they occur, allowing for proactive repairs

or replacements. This approach reduces unexpected downtime
and ensures that essential devices remain operational, thereby
safeguarding the availability of critical patient data. Predic-
tive maintenance, while promising for reducing device malfunc-
tions in healthcare, faces significant limitations in its application
across diverse healthcare environments. In resource-constrained
or smaller healthcare settings, the historical performance data
required to train Al models is often insufficient. These mod-
els depend on large datasets to identify patterns and predict
when devices are likely to fail. Without extensive data, the
algorithms may not accurately anticipate equipment failures,
rendering predictive maintenance ineffective in such environ-
ments. This shortcoming leaves smaller healthcare providers at
risk for unplanned device malfunctions, resulting in data loss
or interruptions in patient care, undermining the benefits of
advanced predictive systems.

Another limitation emerges with the implementation of
blockchain technology in large-scale healthcare systems that
handle high volumes of patient data. Blockchain’s consensus
mechanism, which ensures data integrity and security, intro-
duces latency in transaction processing. In emergency medical
settings, where real-time access to patient information is critical,
these delays can become problematic. The time required for
multiple nodes to agree on data access can slow down vital oper-
ations, potentially affecting patient outcomes. While blockchain
enhances security, its inherent processing delays present a chal-
lenge in time-sensitive environments, limiting its feasibility for
critical care scenarios where immediate data retrieval is essential.

The adoption of edge computing also presents significant
financial and logistical barriers, especially in healthcare facilities
with limited resources. Edge computing aims to reduce data
transmission latency by processing information locally rather
than relying on centralized systems. However, deploying this
technology requires substantial investment in powerful, locally
situated hardware capable of performing complex computa-
tions. For many healthcare organizations those with constrained
budgets, the costs of acquiring and maintaining the necessary
infrastructure may prove prohibitive.
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