
ARAIC Applied Research in Artificial Intelligence and Cloud Computing 57

A Comparative Analysis of Batch, Real-Time, Stream
Processing, and Lambda Architecture for Modern
Analytics Workloads
SHINOY VENGARAMKODE BHASKARAN 1

1Senior Manager, Data Engineering, LogMeIn Inc.

Published: 2019

Abstract
The explosion of big data has necessitated robust, scal-
able, and low-latency data processing paradigms to ad-
dress modern analytics workloads. This paper provides
a technical comparative analysis of batch processing,
real-time processing, stream processing, and the hybrid
Lambda architecture, highlighting their architectural
principles, data flow models, performance characteris-
tics, and trade-offs. Batch processing operates on static,
large-scale datasets and prioritizes high throughput but
incurs significant latency. Real-time and stream pro-
cessing frameworks enable continuous or near-instant
processing of unbounded data streams, focusing on min-
imal latency while maintaining system resilience. The
Lambda architecture integrates batch and stream layers
to provide fault-tolerant, scalable analytics with accurate
and timely results. This paper dissects these paradigms
based on technical metrics such as latency, fault toler-
ance, scalability, data consistency, resource utilization,
and operational complexity. We further analyze real-
world use cases, highlighting how each paradigm ad-
dresses specific workload requirements in domains such
as IoT, finance, and big data systems. Our findings em-
phasize that while no single paradigm is universally
optimal, selecting the right architecture requires balanc-
ing latency, throughput, and computational efficiency
based on workload characteristics and business priori-
ties.
© 2019 ResearchBerg Publishing Group. Submissions will be rigorously

peer-reviewed by experts in the field. We welcome both theoretical and

practical contributions and encourage submissions from researchers, practi-

tioners, and industry professionals.

keywords: batch processing, big data, hybrid architecture, latency,

real-time processing, scalability, stream processing

1. INTRODUCTION

Data ingestion pipelines form the backbone of modern enter-
prise data architectures by ensuring the efficient and reliable
transfer of raw input data from a variety of sources into process-
ing and storage systems. These pipelines facilitate subsequent
stages of the data lifecycle, such as transformation, analysis, and
consumption, by creating a streamlined mechanism for handling
data movement. The significance of ingestion pipelines stems
from the growing volume, velocity, and variety of data that en-
terprises now generate and utilize. Without robust ingestion
frameworks, the process of preparing data for downstream tasks,
such as running analytical queries, training machine learning
models, or generating business intelligence reports, would be
fraught with delays, inconsistencies, and quality issues. There-
fore, these pipelines are required to operate reliably across dis-
parate environments while accounting for a range of technical
and operational challenges, including system constraints, di-
verse data sources, and fluctuating workloads [1].

Enterprise data ecosystems are inherently diverse, encom-
passing structured, semi-structured, and unstructured data.
Structured data, typically housed in relational databases, con-
tains well-defined schemas that adhere to tabular structures. In
contrast, semi-structured data—such as JSON, XML, and CSV
files—maintains hierarchical or flexible schemas that allow for
dynamic data representation. Unstructured data sources, such as
text documents, audio files, video streams, and sensor data, add
further complexity due to their lack of formal structure and their
dependence on specialized processing techniques. Ingestion
pipelines must accommodate these varying formats by incorpo-
rating parsers, format converters, and serialization mechanisms
that ensure the data is compatible with downstream platforms.
The rise of hybrid and multi-cloud architectures has also ampli-
fied the necessity for pipelines to integrate seamlessly with both
on-premises and cloud-native storage solutions, including dis-
tributed file systems, relational and NoSQL databases, message
queues, and object storage platforms [2].

The movement of data across systems introduces the need
for robust data governance and quality management processes,
which are integral to ingestion pipelines. Data governance en-
tails the definition and enforcement of policies surrounding

https://researchberg.com/index.php/araic
https://orcid.org/0009-0008-0726-5403


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 58

data access, privacy [3], security, and compliance. This includes
mechanisms for identity and access control, encryption of sen-
sitive data in transit and at rest, and adherence to regulatory
frameworks such as GDPR, HIPAA, or CCPA. Simultaneously,
data quality guarantees are crucial to ensure that the ingested
data meets predefined standards of accuracy, consistency, com-
pleteness, and timeliness. These guarantees are implemented
through validation routines, deduplication processes, anomaly
detection algorithms, and error-handling strategies that address
incomplete or corrupted records. For example, during ingestion,
checks may be performed to validate data formats, ensure ref-
erential integrity, and remove duplicate entries that can skew
analytical outcomes. Implementing robust schema management
strategies further aids in maintaining consistency as data evolves.
Schema management tools monitor structural changes to source
data, such as column additions or deletions, and propagate up-
dates to downstream systems while minimizing disruptions to
existing workflows.

Enterprises frequently encounter scenarios where data inges-
tion requirements exhibit temporal variability, such as during
peak usage hours, monthly reporting cycles, or real-time event
streaming. To address these challenges, ingestion pipelines are
designed to operate in both batch and streaming modes. Batch
ingestion involves the periodic transfer of large data volumes,
often leveraging tools such as Apache Sqoop, AWS Snowball, or
ETL frameworks like Apache Nifi and Talend. Batch processing
remains well-suited for historical data loads, nightly aggrega-
tions, and environments where low-latency requirements are
less critical. In contrast, streaming ingestion is designed for
scenarios where data must be ingested and processed in near
real-time, such as in event-driven architectures, IoT sensor net-
works, or financial transaction systems. Tools such as Apache
Kafka, Apache Flink, Amazon Kinesis, and Google Pub/Sub
enable the ingestion of continuous data streams by supporting
features such as message queuing, partitioning, and event order-
ing. Hybrid ingestion strategies combine batch and streaming
techniques to offer flexibility in handling both real-time and
historical data flows.

The operational efficiency of ingestion pipelines is inher-
ently shaped by underlying system architectures, network band-
width limitations, storage technologies, and computational re-
sources. For example, network bandwidth directly influences
the rate at which data can be transferred between sources and
ingestion endpoints, particularly when dealing with geographi-
cally distributed systems or edge devices. High-latency or low-
bandwidth connections can result in data bottlenecks, requiring
optimization techniques such as compression, partitioning, and
data filtering to reduce transfer payloads. Storage technolo-
gies also play a pivotal role in ingestion pipelines. Modern
enterprises often rely on distributed storage solutions, such as
Hadoop Distributed File System (HDFS), Amazon S3, Azure
Data Lake, and Google Cloud Storage, which provide the scala-
bility and fault tolerance needed to accommodate large datasets.
The choice of storage format—ranging from row-based formats
like CSV to columnar formats like Parquet and ORC—further im-
pacts pipeline performance, as columnar storage enables more
efficient querying and analytics for certain workloads.

Ingestion pipelines must also balance computational resource
constraints, including CPU, memory, and input/output oper-
ations, particularly in resource-intensive scenarios involving
large-scale data transfers or complex transformations. Efficient
resource allocation can be achieved through distributed com-
puting frameworks, such as Apache Spark, which parallelize

ingestion tasks across multiple nodes to improve throughput.
Autoscaling capabilities offered by cloud platforms further en-
sure that pipelines can dynamically adapt to workload fluctua-
tions by provisioning or decommissioning resources based on
demand. Moreover, techniques such as change data capture
(CDC) can reduce computational overhead by identifying and
ingesting only those records that have been modified since the
last pipeline execution. By minimizing redundant data move-
ment, CDC improves both the efficiency and latency of ingestion
workflows.

Architecturally, ingestion pipelines can be broadly catego-
rized into two types: centralized and decentralized models. In
centralized architectures, data from various sources converges
into a single ingestion system, which then processes and trans-
fers the data to downstream platforms. This model simplifies
governance, monitoring, and maintenance but may introduce
scalability challenges as data volume and variety increase. De-
centralized architectures, on the other hand, distribute ingestion
responsibilities across multiple systems or microservices, en-
abling greater flexibility and scalability. This approach aligns
well with modern data mesh principles, where domain-oriented
teams manage ingestion pipelines tailored to their specific needs.

2. EVOLUTION OF DATA INGESTION FRAMEWORKS

Data ingestion frameworks have undergone significant evo-
lution over the years, transitioning from rudimentary batch-
oriented paradigms to more sophisticated real-time and stream-
ing solutions. In their early stages, batch-oriented inges-
tion frameworks were the dominant approach, primarily be-
cause they aligned well with the technological and business
constraints of the time. These systems were designed to
process data at scheduled intervals—often daily, weekly, or
monthly—delivering insights that reflected a historical view
of operations. Stability and simplicity were key advantages of
batch ingestion, as these frameworks avoided the complexities
associated with real-time data movement, ensuring predictable
performance, resource utilization, and operational reliability. En-
terprises adopted tools such as Apache Sqoop, Hadoop MapRe-
duce, and traditional Extract, Transform, Load (ETL) solutions
to move data between transactional systems, warehouses, and
reporting tools. The periodic nature of batch ingestion meant
that organizations could process large volumes of data efficiently
without requiring continuous resource allocation or monitoring.
However, this also introduced a tradeoff: the inability to react
promptly to events occurring in near real time [2, 4].

As business requirements evolved, the demand for contin-
uous decision-making and instantaneous insights began to re-
shape ingestion strategies. Traditional batch systems, while
stable, could not satisfy use cases where low latency was criti-
cal. Operational scenarios, such as fraud detection in financial
transactions, real-time anomaly identification in industrial sen-
sor streams, or demand forecasting for e-commerce platforms,
required immediate responses based on live data streams. This
shift marked the emergence of real-time ingestion frameworks
that prioritized low-latency data movement and processing.
These frameworks introduced the ability to ingest data con-
tinuously from diverse sources, propagate it through processing
engines with minimal delay, and make the resulting insights
available to downstream systems. Real-time ingestion enabled
organizations to react to unfolding events within seconds or mil-
liseconds, transforming their ability to handle mission-critical
operations [5].

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 59

The adoption of streaming data ingestion frameworks fur-
ther accelerated the move toward real-time analytics. Streaming
engines such as Apache Kafka, Apache Flink, and Amazon Ki-
nesis provided robust capabilities for ingesting, transporting,
and processing data streams in a fault-tolerant and scalable
manner. Unlike traditional batch systems, which process static
datasets in fixed intervals, streaming frameworks operate on
continuous flows of data. This allows for real-time ingestion
and processing, where each event or data point is processed as it
arrives. Streaming ingestion introduces several advantages over
batch-oriented approaches, including support for stateful trans-
formations, continuous aggregations, and automated alerting
mechanisms. Stateful transformations enable systems to main-
tain context or memory across data streams, facilitating complex
operations such as sessionization, windowed joins, and anomaly
detection. For example, in an e-commerce platform, stateful
ingestion pipelines can track user sessions, analyze clickstream
data in real time, and trigger personalized recommendations.
Continuous aggregations further enhance the utility of stream-
ing ingestion by enabling incremental computations—such as
rolling averages or counts—that update dynamically as new
data arrives, eliminating the need to reprocess entire datasets.

The proliferation of streaming engines has also enabled new
paradigms in advanced analytics. Unlike batch ingestion, where
processing occurs after data collection, streaming ingestion sup-
ports event-driven architectures that process and react to data
in-flight. Event-driven frameworks leverage publish-subscribe
or message queue systems to decouple data producers from con-
sumers, allowing ingestion pipelines to handle high-throughput,
low-latency workloads efficiently. Apache Kafka, for exam-
ple, acts as an intermediary by persisting data streams in a
distributed log and enabling downstream systems to consume
data at their own pace. This decoupling improves pipeline
resilience, as individual components can scale or fail indepen-
dently without disrupting the entire ingestion workflow. More-
over, streaming engines support exactly-once processing seman-
tics and idempotent operations, ensuring data consistency and
reliability—a crucial requirement for operational use cases such
as payment systems, healthcare monitoring, or industrial IoT.

The growing sophistication of streaming ingestion frame-
works has been accompanied by advancements in windowing
strategies, a critical capability for performing time-based compu-
tations. Windowing allows streaming engines to group data into
finite intervals for analysis, facilitating operations such as aggre-
gations, joins, and transformations on real-time data. Tumbling
windows, sliding windows, and session windows are commonly
used techniques that enable different types of temporal analy-
sis. Tumbling windows divide data into fixed, non-overlapping
intervals, making them ideal for scenarios such as hourly met-
rics reporting. Sliding windows, on the other hand, maintain
overlapping intervals, allowing systems to analyze data over a
moving time frame. This is particularly useful for monitoring
metrics such as rolling averages or detecting anomalies over
short durations. Session windows, which adapt to user-defined
inactivity gaps, are well-suited for analyzing event-driven user
sessions in domains such as e-commerce and online gaming.

Another notable advancement brought about by streaming
ingestion frameworks is the support for real-time alerting mech-
anisms. These capabilities enable systems to trigger automated
actions in response to events or anomalies detected in live data
streams. For example, in fraud detection systems, real-time in-
gestion pipelines can monitor financial transactions, identify
suspicious patterns using machine learning models, and trigger

alerts for further investigation—all within milliseconds of data
arrival. Similarly, in operational technology environments such
as manufacturing or energy production, streaming ingestion
pipelines can process sensor data in real time to detect devi-
ations from normal operating parameters, enabling proactive
maintenance and reducing equipment downtime.

The evolution of ingestion strategies toward real-time and
streaming architectures has been further reinforced by the con-
vergence of ingestion pipelines with advanced analytics frame-
works. Modern systems increasingly integrate streaming inges-
tion with machine learning and artificial intelligence workflows,
enabling real-time inferencing and decision-making. Frame-
works such as Apache Flink and Google Dataflow support na-
tive integration with machine learning models, allowing orga-
nizations to apply predictive analytics, anomaly detection, or
classification algorithms to live data streams. This has opened up
possibilities for highly responsive applications, such as recom-
mendation systems, dynamic pricing engines, and automated
quality control systems.

3. DEFINITIONS, ARCHITECTURES, PRCOCESSES OF
THE EXAMINED FRAMEWORKS

A. Batch processing
Batch processing refers to the execution of a series of data jobs
where a large volume of data is collected, stored, and processed
in predetermined intervals. The process operates without man-
ual intervention, grouping all records together before processing.
Batch processing consists of several critical components. Data
collection involves accumulating raw data over time and stor-
ing it in repositories such as file systems or distributed storage
systems like Hadoop Distributed File System (HDFS). A batch
scheduler orchestrates the execution of jobs at specific intervals,
using tools like Apache Oozie or Cron to automate processing
workflows. The batch processor serves as the computation en-
gine that processes the data sequentially or in parallel, employ-
ing frameworks such as Apache Hadoop’s MapReduce, Spark
Batch Jobs, and ETL (Extract, Transform, Load) tools. Data is
stored in a storage layer, including systems such as HDFS, Ama-
zon S3, or relational databases (RDBMS), which handle both raw
and processed data. Finally, the output of batch jobs is stored in
another location for downstream analytics, reporting, or further
business processes.[6].

The architecture of batch processing consists of three fun-
damental layers. The input layer serves as the staging ground
where data is collected and persisted in storage systems that can
accommodate large-scale accumulation over time. The process-
ing layer leverages batch engines, such as MapReduce, to divide
tasks into smaller sub-tasks that run concurrently across multi-
ple compute nodes, forming a distributed, parallel-processing
architecture. The output layer represents the final stage where
the processed results are written to storage systems, such as
databases or data warehouses, making them available for analy-
sis or reporting purposes.

The batch processing workflow follows a structured process.
Initially, data accumulation occurs over specified intervals, such
as hourly, daily, or weekly, depending on system requirements.
A batch job is then triggered by a scheduler to process the accu-
mulated data. During this phase, the batch processor divides
the input data into smaller partitions and processes these par-
titions concurrently across compute nodes. Upon completion,
the processed results are written back to the designated stor-
age system, where they can be accessed for further use. Batch

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 60

Data Accumulation
(e.g., Hourly, Daily)

Scheduler
Triggers Batch Job

Data Partitioning
and Concurrent Processing

Processed Results
Written to Storage

Trigger Batch Job

Divide Data

Save Processed Results

Fig. 1. Diagram of the data processing workflow, from data accumulation to result storage.

processing systems are particularly suited for scenarios where
data volumes are vast, but time sensitivity is minimal. Examples
include generating monthly financial reports, transforming data
for data warehouses, and analyzing historical datasets.

B. Real-time processing

Real-time processing involves handling data and executing op-
erations immediately as it is received, ensuring minimal latency
in delivering results. The system processes data continuously,
often within milliseconds to seconds, making it essential for
time-sensitive operations. Real-time processing consists of key
components that facilitate its functionality. Data ingestion en-
sures that data is collected continuously from various sources
such as sensors, IoT devices, APIs, or messaging systems like
Apache Kafka and RabbitMQ. The event processing engine ana-
lyzes and processes data events instantaneously as they arrive,
using platforms such as Apache Storm or Apache Flink. Storage
systems play a critical role in maintaining processed or tempo-
rary data, often relying on in-memory databases like Redis or
indexing systems like Elasticsearch for efficient querying. To
visualize outputs in real time, real-time dashboards are used,
with tools like Grafana, Kibana, or custom dashboards providing
immediate insights. Supporting continuous data flow, stream-
ing frameworks such as Apache Kafka or AWS Kinesis act as
messaging systems, enabling reliable delivery of data between
producers and consumers.

The architecture of real-time processing comprises three es-
sential layers. The data sources layer represents the origin of
continuously incoming streams, such as user transactions, sensor
feeds, or stock market updates. The processing layer executes
operations on incoming events as they arrive, applying transfor-
mations, filtering, or computations using real-time processing
engines. This layer ensures that data analysis is conducted with
minimal latency. Finally, the output layer stores or visualizes the
processed data, often presenting it through dashboards, alerting
systems, or applications requiring immediate decision-making.

The real-time processing workflow is designed to handle
continuous and instantaneous data operations. Initially, data
is ingested continuously from various sources such as stream-
ing APIs, event logs, or IoT devices. Real-time data processors
analyze, filter, or transform data events immediately upon ar-
rival, maintaining sub-second latency. Processed outputs are
then directed to real-time dashboards, alerting systems, or stor-
age systems for further consumption. This enables immediate
insights, facilitating fast decision-making and system respon-
siveness.

Real-time processing systems are essential for applications
where time sensitivity is paramount. Common use cases in-
clude fraud detection in financial transactions, live monitoring
systems, and dynamic pricing platforms that require rapid, con-
tinuous analysis of incoming data.

C. Stream processing

Stream processing is a computational paradigm where data is
processed continuously as it flows, enabling near real-time anal-
ysis of data streams. Unlike batch processing, which groups data
into fixed intervals, stream processing handles individual events
incrementally as they arrive. This approach ensures that data is
analyzed with minimal latency, making it suitable for applica-
tions requiring continuous insights. Stream processing consists
of several key components. Data sources generate continuous
streams of events, which may include IoT devices, event logs,
web traffic, or application logs. A stream processor acts as the
central engine for performing computations, transformations,
and aggregations on these continuous streams. Frameworks
such as Apache Kafka Streams, Apache Flink, or Spark Stream-
ing are commonly used to facilitate this processing. To ensure
reliable delivery of streaming data, message brokers like Apache
Kafka, AWS Kinesis, or Google Pub/Sub act as intermediaries
between data producers and consumers. State management
is essential for maintaining intermediate states during stream
processing, such as sliding or tumbling window aggregations,
with tools like RocksDB and in-memory stores ensuring persis-
tence and efficiency. Finally, the sink/output layer represents
the destination of the processed results, including systems like
Elasticsearch, Cassandra, or dashboards for visualization and
querying.

The architecture of stream processing is designed to operate
on continuous data flows. The ingestion layer collects streaming
data and delivers it to a message broker, such as Kafka, which
ensures ordered and fault-tolerant delivery of events. In the pro-
cessing layer, stream processors perform real-time operations
such as filtering, aggregating, or transforming incoming data
based on event-time or processing-time semantics. Windowing
techniques, such as tumbling, sliding, and session windows, are
used to group events into logical time-based segments for analy-
sis. The processed outputs are then delivered to the output layer,
where data can be stored in distributed databases or visualized
through dashboards for further insights.

The stream processing workflow operates in a continuous
and incremental manner. Data streams are ingested continu-
ously from sources, such as sensors, application logs, or event-
driven systems, and sent to a stream processing engine. Within
the processor, computations, transformations, and stateful op-
erations are applied in real time, often leveraging windowing
mechanisms to handle event-time boundaries. Outputs from
the stream processor are emitted incrementally to sinks such as
databases, search systems, or real-time dashboards for imme-
diate analysis and consumption. This continuous processing
ensures that actionable insights are available as soon as new
data arrives.

Stream processing is essential for use cases requiring con-
stant monitoring and analysis of continuous data streams. Ex-

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 61

Continuous
Data Ingestion

(Various Sources)

Real-time Data
Processing

(Analyze, Trans-
form, Filter)

Streaming Outputs
(Dashboards, Alerts,

Applications)

Real-time
Data Stream

Processed
Data Stream

Fig. 2. Diagram of the real-time data processing workflow, from ingestion to streaming outputs.

Continuous Data Ingestion
(Divided into Events)

Streaming Engine
(Computations, Transfor-
mations, Aggregations)

Processed Outputs
(Real-time Systems,

Dashboards, Analysis)

Event Stream Real-time Outputs

Fig. 3. Diagram of the real-time event processing workflow, from data ingestion to processed outputs.

amples include fraud detection systems that monitor transaction
streams, IoT applications analyzing sensor data, and anomaly
detection systems that identify irregular patterns in real time. By
enabling low-latency, incremental processing, stream processing
supports the demands of modern data-driven applications.

D. Lambda architecture

Lambda architecture is a hybrid data processing design that in-
tegrates both batch and stream processing to handle large-scale
data efficiently while addressing latency and throughput require-
ments. It combines the strengths of both paradigms, ensuring
that data can be processed in real time while maintaining accu-
racy through batch processing. The architecture is particularly
suited for systems where real-time analytics and historical data
processing need to coexist. Lambda architecture is composed of
three primary layers: the batch layer, the speed layer, and the
serving layer [7].

The batch layer processes large volumes of historical data
in fixed intervals. It uses batch processing frameworks such as
Apache Hadoop MapReduce or Apache Spark to compute com-
prehensive results, acting as the authoritative source of truth.
The batch layer provides fault tolerance and accuracy by process-
ing complete datasets, ensuring that results are consistent and
reliable. Simultaneously, the speed layer handles real-time data
processing to deliver low-latency results. Streaming frameworks
like Apache Storm, Apache Flink, or Spark Streaming process
incoming data streams incrementally, producing approximate
results until the batch layer completes its computations. This
allows the system to deliver real-time insights while maintain-
ing overall accuracy. The serving layer combines the outputs
from the batch and speed layers, enabling users to query and re-
trieve results efficiently. Serving systems such as Apache Druid,
Apache HBase, or Cassandra act as storage engines that provide
precomputed views for downstream consumption.

The architecture of Lambda consists of three integrated lay-
ers working in parallel. The data sources generate continuous
streams of data, feeding into both the batch and speed layers
simultaneously. The batch layer processes historical data in
large-scale jobs, producing accurate and complete outputs over
time, which are written to the serving layer. In contrast, the
speed layer processes incoming data in real time to deliver ap-
proximate, low-latency results, which also feed into the serving
layer. The serving layer integrates both batch and real-time re-
sults, ensuring that users querying the system receive the most
up-to-date and accurate data. A unified query layer further ab-
stracts the complexity by providing a single interface to access
combined outputs [8, 9].

The workflow of Lambda architecture is designed to balance

scalability, accuracy, and latency. First, raw data from sources
such as logs, IoT devices, or event streams is ingested into both
the batch and speed layers. The batch layer processes this data
periodically using batch jobs to produce accurate results. Si-
multaneously, the speed layer analyzes the same data streams
in real time, delivering fast, approximate results. Both outputs
are stored in the serving layer, where a query system combines
the batch layer’s comprehensive results with the speed layer’s
real-time updates. Users access this unified view to gain insights
that are both up-to-date and accurate.

Lambda architecture is particularly effective for systems re-
quiring real-time analytics alongside historical data processing.
Common use cases include real-time analytics dashboards, rec-
ommendation engines, and log aggregation systems. By com-
bining batch and stream processing, the architecture achieves
fault tolerance, scalability, and low latency, ensuring robust per-
formance for modern data-driven applications.

4. COMPARATIVE ANALYSIS OF DATA INGESTION
PARADIGMS

A. Batch Processing
Batch processing is a computational paradigm that operates
on large-scale datasets by processing them in bulk, often as a
single job. It is particularly well-suited for scenarios where high
throughput is more critical than low latency, and where datasets
are static or updated periodically rather than continuously. The
key characteristics, architecture, use cases, and limitations of
batch processing highlight its strengths and its constraints in
specific contexts.

A.1. Key Characteristics

Batch processing systems exhibit several distinct characteristics
that make them particularly suitable for certain types of work-
loads. One primary feature is the reliance on static datasets,
which are pre-aggregated and processed as a batch, rather than
in real-time. This ensures that all the data for a job is available at
the start of the computation, enabling efficient handling of large-
scale datasets. Latency is inherently high in batch processing
because the computational tasks are executed periodically rather
than instantaneously. The trade-off, however, is a very high
throughput. Batch processing frameworks are specifically opti-
mized for handling voluminous data, often spanning terabytes
or petabytes, within a single job execution.

Fault tolerance is a critical aspect of batch processing systems.
This is typically achieved through mechanisms such as data
replication and job retries. For instance, when tasks fail, frame-
works such as Hadoop and Spark are capable of re-executing
those tasks without compromising the integrity of the overall

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 62

Input Data
(Continuous Flow)

Batch Layer
(Accurate, Com-
plete Processing)

Speed Layer
(Real-time, Approx-

imate Processing)

Serving Layer
(Integrated Results)

User Queries
(Unified Results)

In
put St

re
am

Input Stream

Batch Results Speed Results

Unified Results

Fig. 4. Diagram of the Lambda Architecture workflow, integrating batch and speed processing layers with the serving layer.

computation. Another advantage of batch-oriented systems
lies in their efficient resource utilization. By scheduling jobs
in batches and coordinating resource allocation across nodes,
these systems ensure that computational and storage resources
are optimally utilized, reducing idle time and maximizing the
performance of large-scale data processing workflows.

A.2. Architecture

The architecture of a batch processing system is built around
a series of tightly integrated components designed to facilitate
efficient and scalable data handling. At its core, data storage
plays a crucial role. Most modern batch processing systems rely
on distributed storage solutions, such as the Hadoop Distributed
File System (HDFS) or cloud-based object storage platforms like
Amazon S3, Azure Blob Storage, or Google Cloud Storage. These
storage solutions provide high durability, scalability, and fault
tolerance, which are essential for handling the massive datasets
that batch processing jobs typically require [10].

The processing engine is another critical component of the
architecture. Frameworks such as Hadoop MapReduce and
Apache Spark dominate this domain. Hadoop MapReduce op-
erates on a disk-based execution model, dividing a dataset into
smaller chunks, processing each in parallel, and aggregating
the results. Spark, on the other hand, employs an in-memory
processing model that dramatically improves speed for itera-
tive tasks by retaining intermediate results in memory rather
than writing them to disk. Both frameworks leverage paral-
lelism across distributed systems, ensuring that even the most

computationally intensive jobs can be executed efficiently. The
architecture also includes job schedulers that determine the or-
der and priority of tasks, ensuring efficient execution within the
cluster.

In addition to storage and processing, batch processing sys-
tems often integrate with workflow orchestration tools such as
Apache Oozie or Airflow. These tools enable the automation of
complex workflows, including dependency management and
error handling, which are vital for large-scale enterprise data
pipelines.

A.3. Use Cases

Batch processing is widely applied in scenarios where real-time
responses are not required, but the scale and complexity of data
demand efficient handling and robust computation. One of the
most common use cases is in Extract, Transform, Load (ETL)
pipelines. These pipelines involve extracting data from diverse
sources, transforming it into a standardized format, and loading
it into a centralized storage solution such as a data warehouse.
Batch processing frameworks excel in such tasks due to their
ability to process large datasets efficiently, ensuring that data
transformations are applied consistently and reliably across the
entire dataset.

Historical analysis is another prominent use case. This in-
cludes generating monthly or quarterly business reports, per-
forming data warehousing operations, and conducting trend
analysis over long periods. For example, organizations may
use batch processing to analyze customer purchasing behav-

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 63

Table 1. Comparison of Batch Processing Frameworks: Hadoop MapReduce vs. Apache Spark

Framework Key Features

Hadoop MapReduce Disk-based execution model; optimized for large-scale
batch processing; high fault tolerance through data repli-
cation.

Apache Spark In-memory execution model; optimized for iterative com-
putations; faster processing speeds for repetitive tasks like
machine learning.

iors over a decade, identifying patterns that inform strategic
decision-making. Similarly, machine learning workflows, partic-
ularly those that involve training models on massive datasets,
often leverage batch processing frameworks. The ability to paral-
lelize computations across a cluster of nodes enables significant
reductions in the time required for training.

In scientific research, batch processing is invaluable for ana-
lyzing data generated from large-scale experiments. For instance,
genomic researchers often process petabytes of sequencing data
to identify gene variations associated with diseases. Similarly,
in climate modeling, batch processing frameworks enable the
simulation of long-term weather patterns, which involves the
processing of extensive datasets collected over decades.

A.4. Limitations

While batch processing offers numerous advantages for certain
types of workloads, it is not without limitations. One significant
drawback is its unsuitability for real-time use cases. Because
batch jobs operate on static datasets and are scheduled to run pe-
riodically, there is an inherent delay in processing time-sensitive
data. For example, in scenarios where immediate responses are
required, such as real-time fraud detection or online recommen-
dation systems, batch processing falls short. The high latency
associated with batch processing can result in delays that are un-
acceptable for applications requiring real-time or near-real-time
data availability.

Additionally, the periodic nature of batch jobs means that
data ingested into the system is not immediately available for
analysis. This can hinder the ability of organizations to respond
quickly to emerging trends or unexpected events. Furthermore,
the resource-intensive nature of batch processing can sometimes
lead to suboptimal performance when dealing with smaller
datasets or tasks that require frequent updates, as the overhead
of initiating and scheduling a batch job may outweigh its benefits
in such scenarios.

B. Real-Time Processing

Real-time processing refers to the computational paradigm
wherein data is ingested, processed, and analyzed with minimal
latency, often in milliseconds to seconds. This approach is piv-
otal for scenarios where timely insights and rapid responses to
incoming data streams are critical. Real-time processing systems
are characterized by their event-driven nature, distributed ar-
chitectures, and ability to maintain high availability even under
fault conditions. By examining its key characteristics, architec-
ture, use cases, and limitations, we can understand how real-
time processing complements batch processing in the broader
domain of data analytics [11].

B.1. Key Characteristics

The defining characteristic of real-time processing systems is
their ability to handle data as it arrives, in contrast to batch
systems that operate on static datasets. These systems are event-
driven, meaning that computations are triggered by discrete
events such as sensor readings, user interactions, or financial
transactions. This event-driven model enables real-time sys-
tems to achieve exceptionally low latencies, typically measured
in milliseconds or seconds. The result is the capability to de-
rive actionable insights or trigger automated responses almost
instantaneously.

Fault tolerance is another critical feature of real-time process-
ing. Unlike batch processing, where entire jobs may be retried
upon failure, real-time systems utilize mechanisms such as event
logs and checkpoints to enable stateful fault recovery. For ex-
ample, if a processing node fails, its state can be reconstructed
from a recent checkpoint, ensuring minimal disruption. This
fault-tolerant design enhances system reliability, a necessity for
mission-critical applications.

Scalability is a key consideration for real-time systems, as
they often deal with high-velocity data streams generated by
diverse sources. Horizontal scalability, achieved by distribut-
ing the workload across multiple nodes, ensures that real-time
processing systems can handle increasing data volumes without
degradation in performance. Distributed architectures, coupled
with load-balancing mechanisms, allow these systems to scale
seamlessly in response to dynamic workload demands, main-
taining their low-latency guarantees even as data throughput
grows.

B.2. Architecture

The architecture of real-time processing systems revolves around
the seamless integration of data ingestion, computation, and
delivery. The first component, data ingestion, involves the real-
time collection and transportation of event streams. Event-based
streaming platforms, such as Apache Kafka, RabbitMQ, and
Amazon Kinesis, play a central role in this process. These plat-
forms act as distributed message brokers, enabling the efficient
delivery of high-throughput data streams to downstream pro-
cessing systems while maintaining durability and fault toler-
ance.

The core of real-time processing lies in the processing en-
gine, which is responsible for executing computations on incom-
ing data streams. Frameworks such as Apache Storm, Apache
Flink, and Spark Streaming dominate this space. Apache Storm
operates on a directed acyclic graph (DAG)-based topology,
processing events as tuples and ensuring low-latency execu-
tion. Apache Flink extends these capabilities with its power-
ful stream-processing semantics, offering stateful computation,
event-time processing, and exactly-once guarantees. Meanwhile,

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 64

Table 2. Representative Use Cases for Batch Processing Systems

Use Case Example Scenarios

ETL Pipelines Extracting and transforming data for cen-
tralized storage in data warehouses.

Historical Analysis Monthly and quarterly reporting; trend
analysis over time.

Machine Learning Workflows Training models on large-scale datasets for
predictive analytics.

Scientific Computing Processing and analyzing data from large-
scale experiments, such as genomic sequenc-
ing or climate modeling.

Spark Streaming provides micro-batch processing as a hybrid
approach, combining the reliability of batch systems with the
responsiveness of real-time frameworks. These engines are built
to handle distributed workloads, allowing tasks to be processed
concurrently across clusters.

Another critical architectural component is data storage, par-
ticularly for maintaining state and ensuring fault tolerance. For
example, event logs, distributed file systems, or databases may
be used to persist incoming data streams and intermediate pro-
cessing results. Storage systems like Apache Cassandra, Ama-
zon DynamoDB, and HDFS often complement real-time frame-
works by providing scalable and high-throughput storage capa-
bilities.

The architecture incorporates mechanisms for data delivery
and integration with downstream applications. Real-time sys-
tems are often designed to interface with visualization tools,
alerting mechanisms, or automated workflows, ensuring that
the insights generated by the system are immediately action-
able. This integration makes real-time processing particularly
valuable in environments where automated decision-making is
required.

B.3. Use Cases

Real-time processing finds its application in a wide range of do-
mains where timely decision-making is paramount. One of the
most critical use cases is in fraud detection. Financial institutions
leverage real-time analytics to monitor transaction streams for
anomalies indicative of fraudulent behavior. For instance, an un-
usually large withdrawal from a user’s account or a transaction
originating from an unexpected location may trigger immediate
alerts or automated interventions. The ability to detect and re-
spond to fraudulent activity in real time significantly reduces
financial losses and enhances customer trust.

Another prominent use case is the monitoring and analysis
of data generated by Internet of Things (IoT) devices. In this
context, real-time processing systems enable the continuous anal-
ysis of sensor data to support applications such as predictive
maintenance, energy optimization, and health monitoring. For
example, a manufacturing plant might use real-time analytics to
identify equipment failures before they occur, minimizing down-
time and reducing operational costs. Similarly, smart home
systems rely on real-time processing to dynamically adjust light-
ing, temperature, and security settings based on user behavior
and environmental conditions.

Streaming analytics is another area where real-time process-
ing excels. Platforms such as Twitter and Facebook use real-time
systems to analyze user-generated content and interactions, en-

abling features such as trending topics, sentiment analysis, and
targeted advertising. Similarly, e-commerce platforms monitor
user activity in real time to provide personalized recommenda-
tions, optimize inventory management, and dynamically adjust
pricing strategies based on demand fluctuations.

Automated trading is a particularly high-stakes application of
real-time processing. In financial markets, algorithms powered
by real-time analytics process vast quantities of market data to
identify opportunities and execute trades within microseconds.
The low-latency nature of real-time systems is critical in this
domain, as even slight delays can result in significant financial
losses.

B.4. Limitations

Despite its numerous advantages, real-time processing is not
without challenges. One of the most significant limitations is
the substantial infrastructure required to achieve low-latency
computation. Real-time systems often rely on high-performance
hardware, extensive network bandwidth, and optimized soft-
ware configurations to meet the stringent requirements of
latency-sensitive applications. This infrastructure can be com-
plex to deploy and maintain, requiring specialized expertise and
significant upfront investments.

Another challenge is the potentially higher operational cost
of maintaining real-time systems, particularly in environments
with strict service-level agreements (SLAs). The need for contin-
uous uptime, rapid scaling, and fault-tolerant architectures often
translates to increased resource utilization and higher expenses.
For example, achieving high availability in real-time systems
may necessitate the deployment of redundant nodes and backup
systems, which can add to both hardware and operational costs.

In addition to these technical and economic constraints, the
design of real-time systems must carefully address issues such
as data consistency, fault recovery, and load balancing. Unlike
batch systems, which operate on static datasets, real-time sys-
tems must ensure that computations are accurate and consistent
even as data streams arrive out of order or with delays. Im-
plementing mechanisms to address these challenges without
compromising system performance is a complex task.

C. Stream Processing
Stream processing represents a computational paradigm specif-
ically designed for handling unbounded, continuous streams
of data in near-real-time. Unlike batch processing, which op-
erates on static datasets, or real-time processing, which often
focuses on discrete events, stream processing emphasizes the
continuous and incremental nature of data computation. This

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 65

Table 3. Comparison of Real-Time Processing Frameworks: Apache Storm, Apache Flink, and Spark Streaming

Framework Key Features

Apache Storm Low-latency processing with tuple-based event handling;
fault tolerance via task replication; suitable for real-time
computation in high-throughput systems.

Apache Flink Stateful stream processing with exactly-once guarantees;
supports event-time processing; designed for complex
event-driven applications.

Spark Streaming Micro-batch processing model; integrates with the Spark
ecosystem; balances fault tolerance and real-time respon-
siveness.

Table 4. Representative Use Cases for Real-Time Processing Systems

Use Case Example Scenarios

Fraud Detection Real-time anomaly detection in financial
transactions; automated alerts for suspi-
cious activities.

IoT Monitoring Sensor data analytics for smart homes, man-
ufacturing, and predictive maintenance.

Streaming Analytics Social media sentiment analysis; tracking
user interactions in e-commerce platforms.

Automated Trading High-frequency trading in financial mar-
kets; real-time decision-making based on
market trends.

approach is particularly suited for dynamic workloads where
insights need to be derived and acted upon as data flows into
the system. Stream processing systems are characterized by their
scalability, low latency, and robust fault tolerance mechanisms,
enabling them to address a wide range of use cases across vari-
ous industries. In this section, we discuss the key characteristics,
architectural components, use cases, and limitations of stream
processing to highlight its technical foundations and practical
applications.

C.1. Key Characteristics

The defining feature of stream processing systems is their abil-
ity to handle unbounded streams of data that arrive continu-
ously over time. Unlike batch systems that operate on a finite
dataset, stream processing frameworks are designed to process
data incrementally as it arrives, maintaining a constant flow
of computation. This continuous nature enables stream pro-
cessing systems to deliver insights with near-real-time latency,
which is critical for applications where timely decision-making
is paramount. While real-time systems aim for sub-second laten-
cies for discrete events, stream processing excels in managing
ongoing computations over time, making it ideal for aggrega-
tions, pattern detection, and windowed analytics [12].

Scalability is another key attribute of stream processing sys-
tems. These systems leverage distributed architectures to handle
high-velocity and high-volume data streams generated by mod-
ern applications, such as Internet of Things (IoT) devices, social
media platforms, or financial markets. Horizontal scalability is
achieved by distributing the workload across multiple nodes, al-
lowing the system to accommodate increasing data rates without

compromising performance.
Fault tolerance is a critical requirement for stream processing

due to the continuous and often stateful nature of computations.
Failures in a stream processing system, such as node crashes or
network interruptions, can disrupt ongoing computations and
result in data loss. To address this, modern stream processing
frameworks implement advanced fault-tolerance mechanisms
such as checkpoints, which periodically save the state of the
computation, and message guarantees like exactly-once or at-
least-once delivery. These mechanisms ensure that computations
can be resumed seamlessly in the event of a failure, maintaining
both accuracy and consistency.

C.2. Architecture

The architecture of a stream processing system is designed to
handle the complexities of continuous data ingestion, compu-
tation, and state management. At the core of the architecture
is the data flow layer, which facilitates the incremental deliv-
ery of events to the processing engine. Streaming platforms
like Apache Kafka, Apache Flume, and Amazon Kinesis play a
pivotal role in this layer. These platforms act as distributed mes-
saging systems, enabling the efficient ingestion, buffering, and
delivery of unbounded data streams to downstream consumers.
Kafka, for instance, provides a high-throughput, fault-tolerant
pub-sub model that supports the scalable ingestion of large vol-
umes of data.

The processing engine is the central component of the archi-
tecture, responsible for performing computations on incoming
streams. Frameworks like Apache Flink, Kafka Streams, and
Apache Beam dominate the domain of stream processing en-

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 66

gines. Apache Flink, in particular, is well-suited for stateful
processing due to its advanced windowing capabilities, event-
time processing, and exactly-once guarantees. Kafka Streams,
on the other hand, operates natively on data stored in Kafka
topics, providing a lightweight yet powerful tool for processing
streaming data directly within Kafka ecosystems. These engines
support various computation models, including transformations,
aggregations, joins, and complex event processing.

State management is a critical aspect of the processing engine,
particularly for stateful computations like aggregations, joins,
and sessionization. Modern frameworks use embedded state
backends or external state stores, such as RocksDB or distributed
databases, to persist intermediate results. These state stores are
tightly integrated with checkpointing mechanisms to ensure
fault tolerance.

Stream processing systems also provide flexible data delivery
and output mechanisms, enabling processed data to be routed
to databases, storage systems, or user-facing applications in
real time. This architectural design ensures seamless integra-
tion with downstream workflows, making stream processing a
key enabler for operational analytics and automated decision-
making systems.

C.3. Use Cases

Stream processing has emerged as a foundational technology in
numerous application domains where continuous data analy-
sis is essential. One prominent use case is log analytics, which
involves the real-time monitoring and analysis of application
and system logs to detect errors, anomalies, and security threats.
For example, organizations leverage stream processing frame-
works to process logs from distributed microservices architec-
tures, identifying bottlenecks, failures, or intrusion attempts
as they occur. Tools like Elasticsearch, when combined with
streaming frameworks, enhance the observability and reliability
of large-scale systems [13].

Another critical use case is stock market monitoring. In finan-
cial markets, stock prices and trade volumes fluctuate rapidly,
and organizations rely on stream processing systems to analyze
these data streams in real time. By continuously monitoring
stock prices, organizations can detect trends, identify arbitrage
opportunities, and execute high-frequency trading strategies.
The low latency and fault tolerance of stream processing sys-
tems ensure that trading algorithms operate reliably even under
volatile market conditions [12].

Stream processing also plays a pivotal role in fraud detec-
tion, particularly in industries like banking and e-commerce. By
analyzing transaction streams in real time, organizations can
identify suspicious patterns indicative of fraudulent activity,
such as abnormal transaction amounts or geographic inconsis-
tencies. Stream processing frameworks enable the deployment
of sophisticated anomaly detection algorithms that enhance se-
curity while minimizing the impact on legitimate users.

In the IoT domain, stream processing facilitates real-time an-
alytics on sensor data streams, enabling predictive maintenance,
operational optimization, and dynamic control of connected de-
vices. For instance, in industrial settings, sensor data streams
are analyzed to predict equipment failures before they occur,
reducing downtime and maintenance costs. Similarly, energy
companies use stream processing to optimize power grid opera-
tions, balancing supply and demand in real time.

C.4. Limitations

Despite its numerous advantages, stream processing systems
face several challenges that must be addressed for effective de-
ployment. One major limitation is the complexity of implemen-
tation, particularly for stateful and fault-tolerant applications.
Designing and implementing systems that maintain accurate
state across distributed nodes, while handling failures and en-
suring exactly-once semantics, is a non-trivial task that requires
specialized expertise and careful engineering.

Another challenge is the higher resource consumption asso-
ciated with continuous workloads. Stream processing systems
must maintain active computations and state for the entire dura-
tion of the data stream, which can lead to significant memory,
CPU, and storage requirements. This is especially pronounced
in environments with high data velocity, where scalability and
resource management become critical concerns.

Additionally, achieving optimal performance in stream pro-
cessing systems often requires fine-tuning of parameters such
as window sizes, checkpointing intervals, and resource alloca-
tion. Misconfigurations can result in performance bottlenecks or
increased latency, negating the benefits of stream processing.

D. Lambda Architecture
Lambda Architecture is a hybrid data processing paradigm that
integrates the strengths of batch processing and real-time pro-
cessing to deliver a robust and scalable solution for managing
large-scale data workflows. Designed to address the challenges
of balancing latency, fault tolerance, and data accuracy, Lambda
Architecture is widely adopted in systems that require both
real-time responsiveness and the ability to process historical
data with high accuracy. By combining these capabilities, the
architecture ensures that insights are not only timely but also
comprehensive. This section explores the key characteristics,
architectural design, use cases, and limitations of Lambda Archi-
tecture, highlighting its role in modern data systems.

D.1. Key Characteristics

Lambda Architecture is characterized by its hybrid approach,
which combines a batch layer for historical data computations
with a speed layer for real-time processing. This dual-layer de-
sign enables the architecture to achieve a balance between the
high accuracy of batch processing and the low-latency respon-
siveness of real-time systems. In essence, the batch layer ensures
that the results of large-scale computations are accurate and
consistent, while the speed layer focuses on delivering quick
insights from the most recent data.

Fault tolerance is another key characteristic of Lambda Ar-
chitecture. By maintaining separate pipelines for batch and
real-time data processing, the system ensures that faults in one
layer do not compromise the entire workflow. Data is typically
ingested redundantly into both layers, and the results are recon-
ciled in the serving layer. This redundancy enhances robustness
but also contributes to the architecture’s operational complexity.

Lambda Architecture inherently involves trade-offs between
latency and accuracy. While the speed layer delivers insights
in near-real-time, these results may be based on incomplete or
approximate data. The batch layer subsequently processes the
complete dataset to provide more accurate and comprehensive
results. This reconciliation process ensures that applications
benefit from both the timeliness of real-time analytics and the
precision of batch computations.

However, this approach introduces significant complexity.
The need to maintain and synchronize two distinct layers, along

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 67

Table 5. Comparison of Stream Processing Frameworks: Apache Flink vs. Kafka Streams

Framework Key Features

Apache Flink Stateful processing with exactly-once guarantees; supports
event-time and window-based processing; suitable for
large-scale distributed systems.

Kafka Streams Native integration with Kafka topics; lightweight, JVM-
based library for distributed stream processing; ideal for
real-time analytics and ETL workflows.

Table 6. Representative Use Cases for Stream Processing Systems

Use Case Example Scenarios

Log Analytics Real-time monitoring of application and sys-
tem logs for error detection and anomaly
identification.

Stock Market Monitoring Continuous processing of stock prices and
trade volumes for trend analysis and high-
frequency trading.

Fraud Detection Identifying fraudulent activities in real
time by monitoring transaction streams for
anomalies.

IoT Analytics Processing sensor data streams for predic-
tive maintenance and energy optimization.

with the serving layer that integrates their results, can complicate
system design, development, and operations. Furthermore, the
architecture often requires specialized skills to ensure that the
dual pipelines work seamlessly together, making it more chal-
lenging to implement and maintain compared to single-layer
alternatives.

D.2. Architecture

Lambda Architecture comprises three primary layers: the batch
layer, the speed layer, and the serving layer. Each layer plays a
distinct role in achieving the architecture’s goals of fault toler-
ance, scalability, and low latency [14].

The batch layer is responsible for processing and storing the
complete dataset. This layer executes batch computations on his-
torical data to generate high-accuracy results. Distributed batch
processing frameworks such as Apache Hadoop and Apache
Spark are commonly used in this layer. The output of the batch
layer is stored in a format optimized for fast querying by the
serving layer, often using key-value stores or databases that
allow efficient lookups [12].

The speed layer focuses on processing data as it arrives, de-
livering low-latency insights by computing incremental results.
Real-time processing engines such as Apache Storm, Apache
Flink, or Spark Streaming are often employed in this layer. Un-
like the batch layer, which operates on the entire dataset, the
speed layer processes only the most recent data, making it highly
responsive. However, the results generated by the speed layer
are approximate and are later corrected by the more accurate
outputs of the batch layer.

The serving layer acts as the interface between the two pro-
cessing layers and downstream applications. It merges the out-
puts from the batch and speed layers to deliver comprehensive
and consistent results. This layer ensures that applications query-

ing the data receive accurate insights while benefiting from the
low latency provided by the speed layer. Storage systems like
Apache Cassandra, Amazon DynamoDB, or HBase are often
used in the serving layer due to their scalability and ability to
handle high query loads.

Data flows through Lambda Architecture in a parallel man-
ner. Incoming data streams are ingested into both the batch
and speed layers simultaneously. While the speed layer pro-
cesses the data for immediate insights, the batch layer performs
computations on the full dataset to produce accurate, finalized
results. The serving layer then combines these outputs, typically
prioritizing speed layer results for immediate use and replacing
them with batch layer results once they are available [15].

D.3. Use Cases

Lambda Architecture is particularly well-suited for applications
that demand both real-time analytics and accurate historical anal-
ysis. One prominent use case is in e-commerce analytics, where
businesses require immediate insights into customer behavior
while also analyzing long-term trends. For example, the speed
layer can deliver real-time product recommendations based on
a user’s recent browsing activity, while the batch layer com-
putes more sophisticated insights, such as seasonal purchasing
trends or customer lifetime value. By combining these capa-
bilities, Lambda Architecture enables e-commerce platforms to
offer personalized user experiences while supporting strategic
decision-making.

Another significant use case is in telecom network monitor-
ing. Telecommunication companies must continuously monitor
their networks for performance issues, such as latency, packet
loss, or equipment failures. The speed layer can detect anoma-
lies in real time, triggering alerts or automated interventions
to mitigate potential service disruptions. Meanwhile, the batch

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 68

Data Sources
(Logs, Transac-
tions, Sensors)

Batch Layer
(Historical Data Processing)

Speed Layer
(Real-time Data Processing)

Serving Layer
(Unified Queryable View)

Applications
(Dashboards, Alerts,
Machine Learning)

Batch
Input

Real-time Input

Batch Results Speed Results

Integrated Insights

Fig. 5. Visualization of the Lambda Architecture, illustrating the integration of batch processing, speed processing, and serving
layers to provide a unified data processing framework for modern systems.

Table 7. Components of Lambda Architecture and Their Roles

Layer Role and Key Features

Batch Layer Processes the entire dataset for high accuracy; uses frame-
works like Apache Hadoop and Spark; stores outputs in
formats optimized for querying.

Speed Layer Processes incoming data in real time; focuses on low-
latency, approximate results; employs engines like Apache
Flink and Spark Streaming.

Serving Layer Integrates outputs from batch and speed layers; provides
queryable interfaces to downstream applications; uses scal-
able storage solutions like Cassandra or DynamoDB.

layer provides deeper insights by analyzing historical network
data to identify long-term trends, optimize resource allocation,
or predict future issues. This hybrid approach ensures both
operational efficiency and strategic planning.

Fraud detection is another critical application of Lambda Ar-
chitecture. Financial institutions use the speed layer to flag po-
tential fraudulent transactions as they occur, enabling immediate
action such as blocking a card or sending an alert. Concurrently,
the batch layer analyzes broader datasets to uncover patterns
and refine fraud detection algorithms, improving the system’s
accuracy over time.

In healthcare, Lambda Architecture facilitates real-time pa-

tient monitoring systems that alert caregivers to critical events,
such as abnormal heart rates or oxygen levels. Simultaneously,
the batch layer aggregates and analyzes historical health records
to support predictive diagnostics, personalized treatment plans,
and clinical research.

D.4. Limitations

Despite its advantages, Lambda Architecture has several notable
limitations. One of the most significant challenges is the oper-
ational complexity associated with maintaining dual pipelines.
Developers must design, implement, and manage separate sys-
tems for the batch and speed layers, each with its own frame-

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 69

Table 8. Representative Use Cases for Lambda Architecture

Use Case Example Scenarios

E-Commerce Analytics Real-time product recommendations while
analyzing historical purchasing behavior.

Telecom Monitoring Real-time anomaly detection and long-term
network performance analysis.

Fraud Detection Immediate detection of suspicious transac-
tions alongside comprehensive historical in-
vestigations.

Healthcare Analytics Real-time patient monitoring combined
with analysis of historical health records for
predictive diagnostics.

works, configurations, and data handling requirements. This
duplication of effort can significantly increase development time
and the potential for errors.

Another limitation is the resource overhead required to main-
tain redundant data pipelines and processing frameworks. The
ingestion, storage, and computation infrastructure must sup-
port both layers simultaneously, leading to higher infrastructure
costs compared to single-layer architectures. For example, data
must be stored redundantly in formats optimized for both batch
processing and real-time processing, which increases storage
requirements.

Additionally, the reconciliation of results in the serving layer
can introduce complexity. Ensuring that batch and speed layer
outputs are consistent and correctly integrated requires careful
design and tuning. In some cases, discrepancies between the
two layers may result in inconsistencies, requiring additional
mechanisms to resolve conflicts.

5. CONCLUSION

Data ingestion pipelines transform raw, heterogeneous input
into processed data streams suitable for storage, analysis, and
decision-making. Modern enterprises grapple with soaring data
volumes and changing requirements for data freshness, complex-
ity, and responsiveness. Cloud-based infrastructures, distributed
processing engines, and advanced caching mechanisms have
expanded the range of feasible ingestion paradigms. Engineers
and system designers must consider how best to accommodate
a wide variety of data sources, align ingestion strategies with
query patterns, and maintain consistent data quality and relia-
bility. The interplay of operational complexity, cost efficiency,
system scalability, and processing latency underscores the need
for a careful comparative analysis of ingestion approaches. Vary-
ing operational conditions, such as peak load spikes, changing
schema definitions, and changing analytics objectives, compli-
cate the selection of suitable ingestion techniques. Differences
among batch, real-time, stream processing, and hybrid lambda-
style architectures become evident through detailed examination
of their data handling characteristics, fault tolerance mecha-
nisms, resource utilization models, and maintainability profiles
[16].

Batch ingestion suits environments where historical data com-
putations matter more than instantaneous updates. Analytics
tasks such as monthly financial reports, quarterly forecasting, or
machine learning feature generation from stable datasets often
fit this model. The simplicity of batch operations aligns with

batch-friendly storage technologies, making it straightforward
to manage transformations.

Real-time ingestion works well when immediate feedback
supports critical decision-making. Use cases such as intrusion
detection, medical monitoring, or infrastructure anomaly de-
tection benefit from the responsiveness of real-time pipelines.
The ability to observe system health and user behavior as it
evolves can provide valuable insights. Real-time ingestion often
depends on robust messaging layers and specialized data stores
that handle high update rates efficiently.

Stream processing ingestion addresses workloads that value
continuous insights combined with advanced computational fea-
tures. State retention enables event-time operations that reorder
events to produce meaningful results, even when events arrive
delayed. Analytics tasks such as social media trend tracking, on-
line recommendation services, and IoT sensor fleet management
align well with this paradigm.

Lambda Architecture synthesizes batch and streaming, offer-
ing a unified approach that covers a broad range of scenarios.
Deploying Lambda Architecture can be appealing when his-
torical correctness and real-time responsiveness must coexist.
Online advertising analytics, user behavior analysis, and certain
financial dashboards find benefits in this dual strategy, where
batch outputs ensure accuracy while streaming updates main-
tain low-latency views.

Modern analytics stacks encompass data lakes, data ware-
houses, distributed processing engines, and specialized data
stores optimized for different query patterns. Batch ingestion
pipelines integrate seamlessly with batch-oriented engines that
process large datasets efficiently. Popular distributed batch
frameworks rely on parallel processing engines that handle
transformations at scale.

Real-time ingestion pipelines incorporate message brokers,
event hubs, or distributed logs as entry points for data streams.
Processing layers connect to these messaging systems and ex-
ecute low-latency transformations. The ingestion system must
align with storage layers that can handle rapid writes and
queries with minimal overhead. Real-time dashboards and alert-
ing systems consume outputs to empower operational personnel
and analysts.

Stream processing ingestion frameworks often run on plat-
forms that support long-running jobs and distributed state man-
agement. Integration with external key-value stores, stateful
streaming engines, and cluster managers that scale horizontally
is common. Complex transformations that depend on event-

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 70

time semantics or continuous aggregation require a seamless
coupling between ingestion components and computational run-
times.

Lambda Architecture integrates multiple components into a
coherent workflow. Data enters a batch layer and a streaming
layer simultaneously. The batch layer uses distributed com-
putation frameworks that periodically recompute entire views,
feeding results into analytical data stores. The speed layer op-
erates alongside it, continuously updating incremental views
stored in fast, mutable data systems. Analysts query unified
serving layers that merge both batch and streaming outputs,
delivering a holistic view of the dataset.

Batch ingestion approaches often involve well-defined
schemas. Transformations and aggregations apply consistently
to well-understood datasets. This consistency facilitates model-
ing steps that produce stable analytics outputs. Real-time inges-
tion might require more flexible schemas capable of adapting
to changing data patterns. Streaming ingestion patterns encour-
age schema-on-read approaches, handling data with uncertain
formats or fields arriving over time.

Lambda Architecture’s split design impacts data modeling by
separating immutable batch data from mutable streaming views.
Modeling efforts must ensure that both sets of data remain com-
patible so that final queries produce correct results. Maintaining
schema consistency across batch and streaming layers ensures
that integrated views remain meaningful. Achieving seman-
tic alignment may require careful planning so that incremental
updates produced by the streaming layer augment rather than
conflict with batch-derived datasets.

Data engineering teams face strategic decisions when de-
signing ingestion pipelines. Batch ingestion aligns with stable
business processes and clear-cut reporting timelines. Real-time
ingestion demands an organizational commitment to immediacy,
rapid iteration, and continuous monitoring. Stream processing
ingestion requires investment in specialized platforms, skill sets,
and operational strategies. Managing the complexity of Lambda
Architecture involves coordinating batch and streaming teams,
harmonizing the tooling, and ensuring that operational proce-
dures handle the parallel nature of data flows. The choice of
ingestion paradigm influences staffing, training, and vendor de-
cisions. Organizations that value timely insights might allocate
resources to build expertise in real-time or streaming technolo-
gies. Others that find value in historical analytics and batch
computations may emphasize scalability and simplicity. Hybrid
approaches attract enterprises that require flexibility. This com-
plexity may translate into higher engineering overhead or the
adoption of managed services.

https://researchberg.com/index.php/araic


ARAIC Applied Research in Artificial Intelligence and Cloud Computing 71

REFERENCES

1. F. Yang, G. Merlino, N. Ray, et al., “The radstack: Open source lambda
architecture for interactive analytics,” (2017).

2. A. Batyuk and V. Voityshyn, “Streaming process discovery for lambda
architecture-based process monitoring platform,” in 2018 IEEE 13th
International Scientific and Technical Conference on Computer Sci-
ences and Information Technologies (CSIT), vol. 1 (IEEE, 2018), pp.
298–301.

3. R. Khurana and D. Kaul, “Dynamic cybersecurity strategies for ai-
enhanced ecommerce: A federated learning approach to data privacy,”
Appl. Res. Artif. Intell. Cloud Comput. 2, 32–43 (2019).

4. Y. Yamato, H. Kumazaki, and Y. Fukumoto, “Proposal of lambda archi-
tecture adoption for real time predictive maintenance,” in 2016 fourth
international symposium on computing and networking (CANDAR),
(IEEE, 2016), pp. 713–715.

5. U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Trans. on
Parallel Distributed Syst. 32, 1395–1408 (2018).

6. D. Dissanayake and K. Jayasena, “A cloud platform for big iot data
analytics by combining batch and stream processing technologies,”
in 2017 National Information Technology Conference (NITC), (IEEE,
2017), pp. 40–45.

7. M. Gribaudo, M. Iacono, and M. Kiran, “A performance modeling frame-
work for lambda architecture based applications,” Future Gener. Com-
put. Syst. 86, 1032–1041 (2018).

8. R. Patan and M. R. Babu, “A novel performance aware real-time data
handling for big data platforms on lambda architecture,” Int. J. Comput.
Aided Eng. Technol. 10, 418–430 (2018).

9. S. Ounacer, M. A. Talhaoui, S. Ardchir, et al., “A new architecture for
real time data stream processing,” Int. J. Adv. Comput. Sci. Appl. 8
(2017).

10. P. K. Gudipati, “Implementing a lambda architecture to perform real-
time updates,” (2016).

11. M. Feick, N. Kleer, and M. Kohn, “Fundamentals of real-time
data processing architectures lambda and kappa,” in SKILL 2018-
Studierendenkonferenz Informatik, (Gesellschaft für Informatik eV,
2018), pp. 55–66.

12. J. Kroß, A. Brunnert, C. Prehofer, et al., “Stream processing on de-
mand for lambda architectures,” in Computer Performance Engineering:
12th European Workshop, EPEW 2015, Madrid, Spain, August 31-
September 1, 2015, Proceedings 12, (Springer, 2015), pp. 243–257.

13. Z. Hasani, M. Kon-Popovska, and G. Velinov, “Lambda architecture for
real time big data analytic,” ICT Innov. pp. 133–143 (2014).

14. M. Kiran, P. Murphy, I. Monga, et al., “Lambda architecture for cost-
effective batch and speed big data processing,” in 2015 IEEE interna-
tional conference on big data (big data), (IEEE, 2015), pp. 2785–2792.

15. M. Sethi, “Lambda architecture: Mixing real-time processing with batch
processing,” in International Journal for Research Publication and
Seminar, vol. 6 (2015), pp. 1–8.

16. T. Numnonda, “A real-time recommendation engine using lambda
architecture,” Artif. Life Robotics 23, 249–254 (2018).

https://researchberg.com/index.php/araic

	Introduction
	Evolution of data ingestion frameworks
	Definitions, architectures, prcocesses of the examined frameworks
	Batch processing
	Real-time processing
	Stream processing
	Lambda architecture

	Comparative Analysis of Data Ingestion Paradigms
	Batch Processing
	Key Characteristics
	Architecture
	Use Cases
	Limitations

	Real-Time Processing
	Key Characteristics
	Architecture
	Use Cases
	Limitations

	Stream Processing
	Key Characteristics
	Architecture
	Use Cases
	Limitations

	Lambda Architecture
	Key Characteristics
	Architecture
	Use Cases
	Limitations


	Conclusion 

