Leveraging FAERS and Big Data Analytics with Machine Learning for Advanced Healthcare Solutions

Authors

  • Ahmed Hassan Ali Faculty of Medicine ,South Valley University
  • Sameh Saber Associate Professor of Pharmacology, Faculty of Pharmacy Delta University for Science and Technology

Keywords:

FAERS, Big Data Analytics, Machine Learning, Advanced Healthcare Solutions, Drug Repurposing, Pharmacovigilance, Personalized Medicine

Abstract

This research study explores the potential of leveraging the FDA Adverse Event Reporting System (FAERS), combined with big data analytics and machine learning techniques, to enhance healthcare solutions. FAERS serves as a comprehensive database maintained by the U.S. Food and Drug Administration (FDA), encompassing reports of adverse events, medication errors, and product quality issues associated with diverse drugs and therapeutic interventions.By harnessing the power of big data analytics applied to the vast information within FAERS, healthcare professionals and researchers gain valuable insights into drug safety, discover potential adverse reactions, and uncover patterns that may not have been discernible through traditional methods. Particularly, machine learning plays a pivotal role in processing and analyzing this extensive dataset, enabling the extraction of meaningful patterns and prediction of adverse events.The findings of this study demonstrate various ways in which FAERS, big data analytics, and machine learning can be leveraged to provide advanced healthcare solutions. Machine learning algorithms trained on FAERS data can effectively identify early signals of adverse events associated with specific drugs or treatments, allowing for prompt detection and appropriate actions.Big data analytics applied to FAERS data facilitate pharmacovigilance and drug safety monitoring. Machine learning models automatically classify and analyze adverse event reports, efficiently flagging potential safety concerns and identifying emerging trends.The integration of FAERS data with big data analytics and machine learning enables signal detection and causality assessment. This approach aids in the identification of signals that suggest a causal relationship between drugs and adverse events, thereby enhancing the assessment of drug safety.By analyzing FAERS data in conjunction with patient-specific information, machine learning models can assist in identifying patient subgroups that are more susceptible to adverse events. This information is instrumental in personalizing treatment plans and optimizing medication choices, ultimately leading to improved patient outcomes.The combination of FAERS data with other biomedical information offers insights into potential new uses or indications for existing drugs. Machine learning algorithms analyze the integrated data, identifying patterns and making predictions about the efficacy and safety of repurposing existing drugs for new applications.The implementation of FAERS, big data analytics, and machine learning in advanced healthcare solutions necessitates meticulous consideration of data privacy, security, and ethical implications. Safeguarding patient privacy and ensuring responsible data use through anonymization techniques and appropriate data governance are paramount.The integration of FAERS, big data analytics, and machine learning holds immense potential in advancing healthcare solutions, enhancing patient safety, and optimizing medical interventions. The findings of this study demonstrate the multifaceted benefits that can be derived from leveraging these technologies, paving the way for a more efficient and effective healthcare ecosystem.

Downloads

Published

2022-11-14

How to Cite

Ali, A. H., & Saber, S. (2022). Leveraging FAERS and Big Data Analytics with Machine Learning for Advanced Healthcare Solutions. Applied Research in Artificial Intelligence and Cloud Computing, 5(1), 121–134. Retrieved from https://researchberg.com/index.php/araic/article/view/136

Issue

Section

Articles ARAIC