Improving Patient Care with Machine Learning: A Game-Changer for Healthcare

Authors

  • Ali Hassan Shahid Khwaja Fareed University of Engineering and Information Technology
  • Waseem Ahmed Khattak Research scholar, Quaid-I-Azam University Islamabad

Keywords:

Machine Learning, Healthcare, Early Disease Detection, Personalized Treatment Plans, Predictive Analytics, Pharmacovigilance

Abstract

Machine learning has revolutionized the field of healthcare by offering tremendous potential to improve patient care across various domains. This research study aimed to explore the impact of machine learning in healthcare and identify key findings in several areas.Machine learning algorithms demonstrated the ability to detect diseases at an early stage and facilitate accurate diagnoses by analyzing extensive medical data, including patient records, lab results, imaging scans, and genetic information. This capability holds the potential to improve patient outcomes and increase survival rates.The study highlighted that machine learning can generate personalized treatment plans by analyzing individual patient data, considering factors such as medical history, genetic information, and treatment outcomes. This personalized approach enhances treatment effectiveness, reduces adverse events, and contributes to improved patient outcomes.Predictive analytics utilizing machine learning techniques showed promise in patient monitoring by leveraging real-time data such as vital signs, physiological information, and electronic health records. By providing early warnings, healthcare providers can proactively intervene, preventing adverse events and enhancing patient safety.Machine learning played a significant role in precision medicine and drug discovery. By analyzing vast biomedical datasets, including genomics, proteomics, and clinical trial information, machine learning algorithms identified novel drug targets, predicted drug efficacy and toxicity, and optimized treatment regimens. This accelerated drug discovery process holds the potential to provide more effective and personalized treatment options.The study also emphasized the value of machine learning in pharmacovigilance and adverse event detection. By analyzing the FDA Adverse Event Reporting System (FAERS) big data, machine learning algorithms uncovered hidden associations between drugs, medical products, and adverse events, aiding in early detection and monitoring of drug-related safety issues. This finding contributes to improved patient safety and reduced occurrences of adverse events.The research demonstrated the remarkable potential of machine learning in medical imaging analysis. Deep learning algorithms trained on large datasets were able to detect abnormalities in various medical images, facilitating faster and more accurate diagnoses. This technology reduces human error and ultimately leads to improved patient outcomes.While machine learning offers immense benefits, ethical considerations such as patient privacy, algorithm bias, and transparency must be addressed for responsible implementation. Healthcare professionals should remain central to decision-making processes, utilizing machine learning as a tool to enhance their expertise rather than replace it. This study showcases the transformative potential of machine learning in revolutionizing healthcare and improving patient care.

Downloads

Published

2022-11-18

How to Cite

Shahid, A. H., & Khattak, W. A. (2022). Improving Patient Care with Machine Learning: A Game-Changer for Healthcare. Applied Research in Artificial Intelligence and Cloud Computing, 5(1), 150–163. Retrieved from https://researchberg.com/index.php/araic/article/view/138

Issue

Section

Articles ARAIC