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Abstract  
With the rapid proliferation of interconnected devices and the exponential growth of data 

stored in the cloud, the potential attack surface for cybercriminals expands significantly. 

Behavioral biometrics provide an additional layer of security by enabling continuous 

authentication and real-time monitoring. Its continuous and dynamic nature offers 

enhanced security, as it analyzes an individual's unique behavioral patterns in real-time. In 

this study, we utilized a dataset consisting of 90 users' attempts to type the 11-character 

string 'Exponential' eight times. Each attempt was recorded in the cloud with timestamps 

for key press and release events, aligned with the initial key press. The objective was to 

explore the potential of keystroke dynamics for user authentication. Various features were 

extracted from the dataset, categorized into tiers. Tier-0 features included key-press time 

and key-release time, while Tier-1 derived features encompassed durations, latencies, and 

digraphs. Additionally, Tier-2 statistical measures such as maximum, minimum, and mean 

values were calculated. The performance of three popular multiclass machine learning 

models, namely Decision Tree, Multi-layer Perceptron, and LightGBM, was evaluated 
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using these features. The results indicated that incorporating Tier-1 and Tier-2 features 

significantly improved the models' performance compared to relying solely on Tier-0 

features. The inclusion of Tier-1 and Tier-2 features allows the models to capture more 

nuanced patterns and relationships in the keystroke data. While Decision Trees provide a 

baseline, Multi-layer Perceptron and LightGBM outperform them by effectively capturing 

complex relationships. Particularly, LightGBM excels in leveraging information from all 

features, resulting in the highest level of explanatory power and prediction accuracy. This 

highlights the importance of capturing both local and higher-level patterns in keystroke 

data to accurately authenticate users. 

Introduction  
The significance of automated biometric identification methods is progressively 

growing within both corporate and public security systems. These techniques play 

a vital role in ensuring the safety and integrity of various establishments. The term 

"biometric" originates from the Greek words "bio," which refers to life, and 

"metric," which means to measure [1]. In today's world, the reliance on biometric 

recognition systems has surged due to their ability to accurately identify 

individuals based on their unique physiological or behavioral characteristics. 

These systems leverage advanced technology to measure and analyze distinct 

features, such as fingerprints, facial patterns, iris structures, voice patterns, and 

even gait or typing patterns. By extracting and storing these distinctive attributes, 

biometric recognition systems enable swift and accurate identification of 

individuals, making them an invaluable tool for security purposes. 

Behavioral biometrics involve the analysis of an individual's interactions with their 

devices, encompassing factors like their grip, typing speed, and other behavioral 

patterns. Through this analysis, a distinct behavioral profile is created, serving as 

a unique identifier for each person. Unlike active authentication methods that 

necessitate specific actions, such as facial recognition or entering a PIN, behavioral 

biometrics are considered passive since they can be seamlessly collected without 

requiring any additional user effort [2]. 

By observing how a person holds their devices, their typing rhythm, or even the 

pressure they apply while interacting with the device's touchscreen, behavioral 

biometrics capture an array of subtle behavioral cues that reflect an individual's 

habitual patterns. These patterns form a behavioral signature that distinguishes one 

user from another, allowing for reliable identification and authentication [3]. 

The advantage of behavioral biometrics lies in their unobtrusive nature. Users can 

be authenticated seamlessly in the background without the need for explicit actions 
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or prompts, enhancing user experience and convenience. Additionally, as these 

behavioral traits are unique to each individual, they provide an additional layer of 

security against unauthorized access. 

Compared to traditional authentication methods like passwords or PINs, 

behavioral biometrics offer several benefits. They are difficult to replicate or guess 

since they rely on the individual's subconscious behaviors, making them more 

resistant to impersonation or hacking attempts. Furthermore, behavioral biometrics 

are less prone to being forgotten or misplaced, eliminating the need for frequent 

password resets or the risk of written credentials being stolen. 

Behavioral biometric verification encompasses a range of methods that analyze 

various aspects of an individual's behavior to establish their unique identity[4], [5]. 

These methods include keystroke dynamics, gait analysis, voice identification, 

mouse usage characteristics, signature analysis, and cognitive biometrics [6]. By 

examining these behavioral traits, a person's distinct biometric profile can be 

established, enabling secure authentication. Keystroke dynamics involves 

analyzing an individual's  typing patterns, such as the duration between keystrokes 

or the pressure applied while typing. Gait analysis focuses on the way a person 

walks, taking into account factors like stride length and cadence. Voice 

identification utilizes unique vocal characteristics, such as pitch and intonation, to 

verify a person's identity [7], [8]. Mouse usage characteristics analyze patterns in 

how a person moves and interacts with a computer mouse. Signature analysis 

examines the specific nuances and characteristics present in an individual's 

signature. Lastly, cognitive biometrics involve assessing cognitive processes like 

memory, attention, and decision-making patterns [9]. 

Keystroke dynamics is a biometric technique that utilizes the unique typing 

patterns, rhythm, and speed of an individual on a keyboard to create a biometric 

template for identification. This technique relies on two main measurements: dwell 

time and flight time [10], [11]. Dwell time refers to the duration for which a key is 

pressed down by the typist. It captures the time taken by an individual to press and 

hold a key before releasing it. On the other hand, flight time represents the duration 

between releasing one key and pressing the next key. It measures the time interval 

during which the typist's fingers are in the air, transitioning between keystrokes 

[3], [12]. 

By analyzing these raw measurements, keystroke dynamics can establish a distinct 

behavioral pattern specific to each individual. The time taken by a person to locate 

the correct key (flight time) and the duration they hold down a key (dwell time) 

exhibit individualistic characteristics that are independent of overall typing speed 

[13], [14]. Additionally, the rhythm with which certain sequences of characters are 
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typed can vary significantly from person to person. For instance, individuals 

accustomed to typing in English may exhibit faster typing speed for specific 

character sequences like "the," compared to someone with French language 

background [15], [16]. 

To enhance the accuracy and reliability of keystroke dynamics, some software 

combines this biometric technique with other user interactions on the computer. 

For example, it may consider mouse movements, such as acceleration time (how 

quickly the mouse pointer accelerates) and click frequency. By incorporating these 

additional interactions, the software can create a more comprehensive behavioral 

profile, improving the overall accuracy of identification and authentication 

processes [17]–[19]. The integration of keystroke dynamics with other computer 

interactions allows for a more holistic approach to behavioral biometrics [20], [21]. 

By analyzing multiple behavioral aspects, such as typing patterns, mouse 

movements, and clicking behavior, the software can build a more robust and 

accurate representation of an individual's unique behavioral traits, enhancing the 

effectiveness of the authentication process. 

The versatility of behavioral biometrics allows them to be applied in various 

settings. Financial institutions, businesses, government facilities, and retail point 

of sale (POS) systems widely use behavioral biometrics for secure authentication 

purposes [22]. These environments prioritize the accurate identification of 

individuals to prevent unauthorized access, protect sensitive information, and 

combat identity theft or fraud. Furthermore, the adoption of behavioral biometrics 

is expanding to encompass a growing number of other sectors, as organizations 

recognize the value of leveraging behavioral characteristics to enhance security 

and streamline user authentication processes. 

Feature engineering  
Keystroke dynamics analysis involves extracting and examining different 

characteristics derived from recorded keystroke data. 

Tier-0 features: The recorded keystroke data consists of key-press time and key-

release time for each key [23]. 

Tier-1 features: The commonly extracted characteristics are known as local or first-

order features, which are calculated by subtracting timing values. Duration refers 

to the length of time a key is pressed. For a specific key "i," its duration is 

determined using the formula: duration = time when event = RELEASE - time 

when event = PRESS This calculation produces a timing vector, also referred to as 

PR, which contains the duration of each key press in the order they were pressed. 

PR(i) represents the duration of the "i-th" key press for all "i" where 1 ≤ i ≤ n. 



 

 

 

Page | 124 

There are different types of latencies that can be utilized, which involve calculating 

time differences between two key events. 

PP Latency: This measures the time difference between pressing each key. It is 

calculated using the equation: For all "i" where 1 ≤ i < n, PP(i) = time when (i+1)-

th event = PRESS - time when i-th event = PRESS [23].  

RR Latency: This represents the time difference between releasing each key. It is 

calculated using the equation: For all "i" where 1 ≤ i < n, RR(i) = time when (i+1)-

th event = RELEASE - time when i-th event = RELEASE 

RP Latency: This indicates the time difference between releasing one key and 

pressing the next key. It can be calculated using the equation: For all "i" where 1 

≤ i < n, RP(i) = time when (i+1)-th event = PRESS - time when i-th event = 

RELEASE 

Another commonly encountered concept is the digraph, which represents the time 

required to press two keys sequentially. The digraph features (D) of a password 

are calculated as follows: For all "i" where 1 ≤ i < n, Di = time when (i+1)-th event 

= RELEASE - time when i-th event = PRESS. 

Tier-2 features: Some characteristics are not directly derived from the raw 

biometric data but are instead derived from the first-order features [23]. 

Minimum/maximum: This involves determining the minimum and maximum 

values for each type of data (latency and duration). 

Mean/standard deviation: This entails calculating the average value and the 

standard deviation for each type of data (latency and duration). 

Slope: By examining the slope of the biometric sample, we are interested in the 

overall typing pattern. We expect users to maintain a consistent typing style even 

if their speed varies. The new set of features is computed as follows: For all "i" 

where 1 ≤ i < n, result(i) = source(i+1) - source(i). 

Spectral information: A discrete wavelet transformation can be applied to the 

originally extracted features. All operations are performed on the data that has 

undergone wavelet transformation. 
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Table 1. Features  

Tier Features 

Tier-0 Recorded keystroke data: key-press time and key-release time for 
each key 

Tier-1 Local or first-order features: 

- Duration: length of time a key is pressed (calculated as RELEASE 
time - PRESS time) 

- PP Latency: time difference between pressing each key 

- RR Latency: time difference between releasing each key 

- RP Latency: time difference between releasing one key and 
pressing the next key 

- Digraph features (D): time required to press two keys sequentially 

Tier-2 Derived features from Tier-1 features: 

- Minimum/maximum values: for latency and duration 

- Mean/standard deviation: for latency and duration 

- Slope: examining the overall pattern of typing 

- Spectral information: applying discrete wavelet transformation to 
extracted features 

 

To preprocess our continuous data and convert it into discrete values, we utilized 

a technique called binning or discretization. Continuous data refers to variables 

that can take on any value within a certain range, such as age or income. However, 

many machine learning algorithms require discrete input, which means data points 

are divided into specific categories or bins. Binning allows us to transform the 

continuous data into a more manageable form without losing important 

information. 

The binning process involves dividing the range of continuous feature values into 

distinct intervals or bins and assigning discrete labels to each bin. This 

categorization simplifies the representation of our data and makes it more suitable 

for certain algorithms. For example, if we have a dataset with ages ranging from 

20 to 60, we can create bins like [20-30), [30-40), [40-50), [50-60), where the 

brackets indicate inclusive and exclusive boundaries. Each individual's age would 

then be assigned to one of these bins, effectively converting the continuous age 

values into discrete categories. 

To perform the binning process, we employed a specific algorithm called 

KBinsDiscretizer. This algorithm is designed to handle the discretization task 

effectively and efficiently. It takes the continuous features as input and outputs 
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discrete values that fall within the desired range of [0, numBins). The numBins 

parameter represents the number of bins or intervals we want to create. By 

specifying the desired number of bins, we can control the granularity of the 

discretization process. For example, if we set numBins to 5, the algorithm will 

create five equally sized bins, dividing the range of continuous values into five 

intervals. 

After discretizing our features using KBinsDiscretizer, the next step was to split 

our data into two sets: the training dataset and the validation dataset [24]. This 

division plays a critical role in evaluating the performance of classifiers or 

predictive models. To ensure that the data distribution is maintained during the 

split, we employed stratified sampling. This sampling technique is designed to 

create subsets that accurately represent the class distribution of the original dataset. 

In our case, we allocated 80% of the data to the training dataset and the remaining 

20% to the validation dataset. Stratified sampling helps prevent any significant 

imbalances in class representation between the training and validation datasets, 

ensuring that our evaluation is reliable and unbiased. 

Classification algorithms 
The Decision Tree algorithm is a popular and widely used machine learning 

algorithm that is used for both classification and regression tasks [25]. It is a 

supervised learning algorithm that builds a model in the form of a tree structure, 

where each internal node represents a feature or attribute, each branch represents 

a decision rule, and each leaf node represents the outcome or prediction. The 

algorithm learns from a training dataset by recursively partitioning the data based 

on the selected features, aiming to maximize the information gain or minimize 

impurity at each step. Decision trees are easily interpretable and can handle both 

categorical and numerical data, making them suitable for a wide range of 

applications [26].  

The Multi-layer Perceptron (MLP) algorithm is a type of artificial neural network 

that is widely used for both classification and regression tasks [27]. It consists of 

multiple layers of interconnected nodes, or artificial neurons, organized into an 

input layer, one or more hidden layers, and an output layer. Each neuron in the 

network applies a nonlinear activation function to the weighted sum of its inputs, 

allowing the model to capture complex relationships between the features and the 

target variable [28]. The weights and biases of the neurons are learned through a 

process called backpropagation, which iteratively adjusts the parameters to 

minimize the difference between the predicted and actual outputs. 

MLPs are known for their ability to learn complex and nonlinear patterns in the 

data, making them particularly useful in tasks where the relationship between the 
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input and output variables is not easily captured by linear models [28]. They can 

handle both continuous and categorical features, as well as handle missing data by 

utilizing techniques such as imputation. MLPs are also capable of automatically 

extracting relevant features from raw data through the hidden layers, allowing 

them to discover high-level representations that are useful for prediction. 

Additionally, MLPs can be trained on large-scale datasets using techniques like 

mini-batch gradient descent and parallel computing [29]. 

LightGBM is a gradient boosting framework that is designed to provide fast and 

efficient training of gradient boosting models. It is an open-source library 

developed by Microsoft, specifically optimized for large-scale datasets and high-

dimensional feature spaces [30], [31]. LightGBM utilizes the gradient boosting 

algorithm, which combines multiple weak predictive models (typically decision 

trees) into a strong ensemble model. However, LightGBM introduces several 

optimizations to enhance training speed and memory efficiency. It uses a technique 

called histogram-based gradient boosting, where the data is binned into histograms 

to reduce the memory consumption and speed up the training process. 

Results and discussion  
We calculated R-square and RMSE to evaluate The Decision Tree, Multi-layer 

Perceptron, and LightGBM. The first, second, third, and fourth stages of of our 

calculations involved selecting raw features, first order features, second order 

features, and combination of 1st and 2nd order features. 

Table 2. Tier-0 features 

Algorithm R Squared RMSE 

Decision Tree 0.202 25.772 

Multi-layer 
Perceptron 

0.553 21.493 

LightGBM 0.769 17.538 

 

In Table 2, the tier-0 features of different algorithms are presented along with their 

corresponding R-squared and root mean square error (RMSE) values.  The 

Decision Tree algorithm achieved an R-squared value of 0.202, indicating that it 

explains only a small portion of the variance in the data. The RMSE value of 

25.772 suggests that the predictions of this algorithm have a relatively high average 

difference from the actual values. The Multi-layer Perceptron algorithm performed 

better, with an R-squared value of 0.553. This indicates a moderate level of fit to 

the data. The RMSE value of 21.493 suggests that the predictions of this algorithm 

have a lower average difference from the actual values compared to the Decision 
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Tree algorithm. The LightGBM algorithm achieved the highest R-squared value 

of 0.769, indicating a relatively strong fit to the data. Additionally, the RMSE value 

of 17.538 suggests that the predictions of this algorithm have a lower average 

difference from the actual values compared to both the Decision Tree and Multi-

layer Perceptron algorithms. 

Figure 1. Decision tree with Tier-2 features.  

 
 

 

Table 3. Tier-1 features 

Algorithm R Squared RMSE 

Decision Tree 0.559 21.484 

Multi-layer 
Perceptron 

0.746 17.685 

LightGBM 0.969 11.346 

 

Table 3 presents the tier-1 features of different algorithms, along with their 

corresponding R-squared and root mean square error (RMSE) values.  The 

Decision Tree algorithm achieved an R-squared value of 0.559, indicating that it 

explains a moderate portion of the variance in the data. The RMSE value of 21.484 

suggests that the predictions of this algorithm have a relatively low average 

difference from the actual values. The Multi-layer Perceptron algorithm performed 



 

 

 

Page | 129 

better, with an R-squared value of 0.746. This indicates a relatively strong fit to 

the data. The RMSE value of 17.685 suggests that the predictions of this algorithm 

have a lower average difference from the actual values compared to the Decision 

Tree algorithm. The LightGBM algorithm achieved the highest R-squared value 

of 0.969, indicating an excellent fit to the data.  

Table 4. Tier-2 features: 

Algorithm R Squared RMSE 

Decision Tree 0.346 24.891 

Multi-layer 
Perceptron 

0.591 20.764 

LightGBM 0.746 17.678 

 

In Table 4, the Tier-2 features are presented along with their corresponding 

evaluation metrics. Decision Tree, achieved an R Squared value of 0.346, 

indicating that it explains approximately 34.6% of the variance in the data. The 

Root Mean Squared Error (RMSE) for this algorithm is 24.891. LightGBM, 

demonstrates the highest performance among the three, with an R Squared value 

of 0.746. It can be inferred that LightGBM outperforms both Decision Tree and 

Multi-layer Perceptron in terms of both R Squared and RMSE, making it the most 

effective algorithm for the given task.  

 

Table 5. Tier-1 and tier-2 combined: 

Algorithm R Squared RMSE 

Decision Tree 0.591 20.765 

Multi-layer 
Perceptron 

0.731 17.792 

LightGBM 0.913191 9.664 

 

The results in table 5 show that the Decision Tree algorithm achieved an R Squared 

value of 0.591 and an RMSE value of 20.765. The Multi-layer Perceptron 

algorithm performed better with an R Squared value of 0.731 and an RMSE value 

of 17.792. However, the LightGBM algorithm outperformed both with an 

impressive R Squared value of 0.913190521 and an RMSE value of 9.664. These 

results suggest that the LightGBM algorithm exhibited the highest level of 

accuracy and predictive power among the three algorithms evaluated in both Tier-

1 and Tier-2. the LightGBM algorithm consistently outperformed both the 
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Decision Tree and Multi-layer Perceptron algorithms in all tiers, indicating its 

superiority in handling different feature sets. 

The Tier-0 features in keystroke dynamics analysis encompass the basic recorded 

keystroke data, specifically the timing information of key-press and key-release 

events for each key. These features serve as the foundation, providing essential 

temporal data. However, they may have limitations in capturing more complex 

patterns and relationships that exist in the typing behavior. 

To address this, Tier-1 features are derived from the raw data by analyzing 

durations and latencies between key events. Durations refer to the duration of time 

a key remains pressed, while latencies represent the time differences between 

different key events. By calculating these measures, Tier-1 features offer insights 

into local characteristics of typing behavior, allowing for the identification of 

individual key press patterns. 

Tier-2 features are derived from the Tier-1 features, providing additional layers of 

information and a deeper understanding of typing behavior. These features include 

metrics such as minimum and maximum values, which indicate the range of 

durations and latencies observed. Mean and standard deviation are calculated to 

determine the average and variability of these timing measures, offering insights 

into the central tendency and spread of the data. 

Another aspect considered in Tier-2 features is the slope. By analyzing the slope 

of the biometric sample, it is possible to focus on the overall typing pattern rather 

than individual key events. This helps in assessing the consistency of typing style, 

allowing for the detection of characteristic typing behaviors even if the typing 

speed varies. Furthermore, spectral information is obtained by applying wavelet 

transformation to the previously extracted features. This process reveals frequency 

components and enables the characterization of typing behavior in terms of 

different frequency ranges.  

The inclusion of first and Tier-2 features in keystroke dynamics analysis 

significantly enhances the models' ability to discern intricate patterns and 

relationships within the recorded keystroke data. While Tier-0 features offer 

fundamental timing information, they may not fully capture the higher-level 

complexities present in typing behavior. By incorporating first-order features, such 

as durations and latencies, the models gain access to local characteristics that 

provide a more granular understanding of individual key press patterns. 

In evaluating the performance of different algorithms, Decision Trees serve as a 

baseline for comparison. However, the Multi-layer Perceptron and LightGBM 

algorithms exhibit superior performance. This can be attributed to their capacity to 
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capture and leverage the complex relationships between the derived features. The 

Multi-layer Perceptron algorithm, with its layered structure and nonlinear 

activation functions, demonstrates a better fit to the data compared to the Decision 

Tree algorithm. It effectively learns and represents the intricate patterns present in 

the keystroke data, resulting in higher explanatory power and more accurate 

predictions. 

Among the algorithms considered, LightGBM stands out as the top performer. Its 

ability to effectively leverage all the available features, including both first and 

Tier-2 features, contributes to its exceptional performance. LightGBM excels in 

capturing and utilizing the combined information from these features, allowing it 

to uncover complex patterns and relationships that may not be apparent when 

considering the features individually. This comprehensive approach results in the 

highest level of explanatory power and prediction accuracy among the evaluated 

algorithms, making LightGBM an ideal choice for keystroke dynamics analysis 

tasks. 

Figure 1. Feature importance  

 
 

Conclusion  
The research on utilizing behavioral biometrics, specifically keystroke dynamics, 

for user authentication holds significant importance in the field of cybersecurity 

and authentication methods. With the increasing prevalence of AI, IoT, and cloud 

computing, traditional authentication methods such as passwords and PINs are 
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becoming less reliable. Behavioral biometrics offers a novel approach by analyzing 

an individual's unique behavioral patterns in real-time, providing enhanced 

security. 

In this study, we focused on keystroke dynamics and collected a dataset consisting 

of 90 users' attempts to type a specific string multiple time. By recording key press 

and release events along with timestamps, we extracted various features 

categorized into tiers. Tier-0 features included basic key-press and key-release 

times, while Tier-1 features encompassed durations, latencies, and digraphs. Tier-

2 features involved statistical measures like maximum, minimum, and mean 

values. 

The research findings emphasized the importance of incorporating Tier-1 and Tier-

2 features in the authentication models. Compared to relying solely on Tier-0 

features, the inclusion of more nuanced patterns and relationships in the keystroke 

data significantly improved the models' performance. This highlights the need to 

capture both local and higher-level patterns to accurately authenticate users. 

One significant contribution of this study is the identification and evaluation of the 

importance of different tiers of features in keystroke dynamics for user 

authentication. By categorizing the features into Tier-0, Tier-1, and Tier-2, were 

able to systematically analyze their impact on the performance of authentication 

models. This contribution sheds light on the fact that relying solely on basic key-

press and key-release times (Tier-0 features) may not be sufficient to accurately 

authenticate users. The inclusion of more advanced features, such as durations, 

latencies, digraphs, and statistical measures (Tier-1 and Tier-2 features), 

significantly improved the models' performance. This finding underscores the 

importance of capturing and utilizing more nuanced patterns and relationships in 

keystroke data to enhance the accuracy and reliability of user authentication 

systems. 

The dataset used in this research consisted of a relatively small sample size of 90 

users. While efforts were made to collect data from a diverse group, the 

generalizability of the findings may be limited. A larger and more diverse dataset 

would provide a more comprehensive understanding of the performance of the 

authentication models and ensure the reliability of the results across different user 

populations. 
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