
194 | P a g e

Advanced Security Strategies for Containerized

Workloads

Salma Zahir

Department of Computer Science, University of Tunisia

Abstract
Containerization has fundamentally transformed the way software is developed, deployed,

and managed. By encapsulating applications and their dependencies into isolated

environments, containers offer portability, efficiency, and scalability. However, these

advantages come with unique security challenges that traditional security measures are not

equipped to address. As container adoption continues to grow, so does the need for

advanced security strategies that cater specifically to containerized workloads. This paper

delves into these strategies, exploring the comprehensive security measures required

throughout the container lifecycle, including image security, orchestration platform

hardening, runtime security, and access control. By implementing these strategies,

organizations can effectively safeguard their containerized environments against evolving

threats, ensuring the integrity, confidentiality, and availability of their applications.

Keywords: Container Security, Docker, Kubernetes, Container Orchestration,

Runtime Security, Image Scanning, Microservices Security

Introduction

Overview of Containerization

Containerization has emerged as a pivotal technology in modern software

development, offering a solution to the longstanding challenges of

environment consistency, dependency management, and resource

efficiency. Containers allow developers to package an application along

with its dependencies, libraries, and configurations into a single, lightweight

unit that can be deployed consistently across different environments. This

contrasts with traditional virtualization, where entire operating systems are

virtualized, leading to significant overhead. [1]

195 | P a g e

The rise of containers can be attributed to their ability to solve the "it works

on my machine" problem, providing a consistent runtime environment

regardless of where the container is deployed. This consistency has been a

game-changer in the world of DevOps and continuous

integration/continuous deployment (CI/CD) pipelines, where rapid

development cycles demand reliability and efficiency. Tools like Docker

have made containerization accessible, while orchestration platforms like

Kubernetes have enabled the management of large-scale containerized

applications across distributed environments. [2]

Containers are particularly well-suited for microservices architectures,

where applications are broken down into smaller, independent services that

communicate over a network. This architectural style aligns with the

benefits of containers, allowing each microservice to be developed,

deployed, and scaled independently. However, the widespread adoption of

196 | P a g e

containers has also introduced new security challenges that traditional

security models struggle to address.

Importance of Security in Containerized Environments

As the use of containers in production environments has proliferated,

security has become a paramount concern. Containers offer several inherent

security benefits, such as process isolation and the ability to create

immutable infrastructure, but they also introduce significant risks. The

shared kernel model, which allows containers to be lightweight and fast,

also means that a vulnerability in the kernel could potentially compromise

all containers running on a host. This makes container environments an

attractive target for attackers. [3]

Moreover, the dynamic and ephemeral nature of containers complicates

security efforts. Containers are often created and destroyed in seconds,

making it challenging to apply traditional security monitoring and

management tools. Additionally, the widespread use of public container

registries, where images can be freely shared and downloaded, introduces

the risk of deploying malicious or vulnerable images. Without rigorous

security practices, organizations can inadvertently expose themselves to

threats such as data breaches, denial of service attacks, and privilege

escalations. [4]

The complexity of container orchestration platforms like Kubernetes further

compounds these challenges. Kubernetes, while powerful, has a steep

learning curve and requires careful configuration to avoid security pitfalls.

Misconfigurations, such as exposing the Kubernetes API server to the

internet or running containers with excessive privileges, can lead to severe

security breaches. [5]

197 | P a g e

Given these risks, it is clear that traditional security approaches are

insufficient for protecting containerized workloads. A more nuanced,

layered security strategy is required—one that considers the unique

characteristics of containers and the specific threats they face. This paper

aims to explore such strategies, providing a comprehensive guide to

securing containerized environments.

Objective of the Paper

The primary objective of this paper is to provide a detailed examination of

advanced security strategies for containerized workloads. As containers

become increasingly integral to modern software infrastructure, it is

essential to develop security practices that are specifically designed to

address the challenges they present. This paper will cover a range of security

measures, from securing the container lifecycle and hardening orchestration

platforms to implementing robust runtime security and access control

mechanisms.

By exploring these strategies in depth, the paper seeks to equip security

professionals, DevOps engineers, and IT administrators with the knowledge

and tools they need to protect containerized environments effectively. The

goal is not only to mitigate risks but also to establish a security framework

that can adapt to the evolving threat landscape. With the right strategies in

place, organizations can leverage the benefits of containerization while

maintaining a strong security posture. [6]

198 | P a g e

Securing the Container Lifecycle

Image Security

The foundation of container security lies in the integrity and security of the

container image. A container image is a blueprint for creating containers,

consisting of an application and its dependencies. Given the widespread use

of container images in development and production environments, ensuring

their security is crucial to prevent the introduction of vulnerabilities and

malicious code into the containerized infrastructure.

1. Image Source Verification:

One of the first steps in securing container images is to verify their source.

Containers are often built from base images pulled from public or private

registries. While public registries like Docker Hub provide a vast repository

of images, not all of these images are created equal in terms of security.

Some may contain outdated software with known vulnerabilities, while

others may have been compromised with malicious code. [7]

To mitigate these risks, organizations should adopt a policy of only using

images from trusted sources. Official images, provided by software vendors

or trusted communities, are generally more secure as they are maintained

and regularly updated. Additionally, organizations can implement

cryptographic signing of images, where the integrity of an image is verified

through a digital signature. This process ensures that the image has not been

tampered with and that it originates from a trusted source. [7]

2. Vulnerability Scanning:

199 | P a g e

Vulnerability scanning is a critical aspect of container image security. Even

images from trusted sources may contain vulnerabilities if they include

outdated libraries or dependencies. Tools like Clair, Trivy, and Aqua

Security specialize in scanning container images for known vulnerabilities

by comparing the image's contents against a database of known issues. [8]

Organizations should integrate vulnerability scanning into their CI/CD

pipelines to ensure that images are scanned automatically as part of the build

process. This allows vulnerabilities to be identified and remediated before

the image is deployed to production. Regular scanning of images stored in

container registries is also necessary to detect newly discovered

vulnerabilities that may affect previously built images.

3. Minimalist Images:

Another effective strategy for securing container images is to use minimalist

images. A minimalist image contains only the essential components

200 | P a g e

required for the application to function, reducing the attack surface by

excluding unnecessary tools, libraries, and utilities. By minimizing the

contents of an image, organizations can significantly reduce the likelihood

of vulnerabilities and exploits.

Alpine Linux, for example, is a popular base image for minimalist

containers due to its small size and reduced set of packages. However, even

with minimalist images, it is important to ensure that all included

components are up-to-date and free from vulnerabilities. Organizations

should also consider custom-building their own base images tailored to their

specific security requirements. [1]

4. Image Hardening:

Image hardening involves applying security best practices to container

images to reduce their susceptibility to attacks. This can include removing

unnecessary components, configuring secure defaults, and ensuring that

sensitive information such as passwords or API keys are not embedded

within the image. Additionally, organizations should implement

immutability in their image builds, where once an image is created, it is not

modified. This prevents changes that could introduce vulnerabilities or

inconsistencies across environments. [9]

Another aspect of image hardening is to ensure that the images run as non-

root users by default. Containers running as root have elevated privileges

that can be exploited by attackers to gain control of the host system. By

configuring containers to run as non-root, the impact of a potential

compromise is significantly reduced. [10]

201 | P a g e

Securing Image Distribution and Storage

The security of container images does not end with their creation. Ensuring

the secure distribution and storage of images is equally important to prevent

unauthorized access, tampering, or leakage of sensitive information. [11]

1. Private Registries:

Private container registries provide a controlled environment for storing and

managing container images. Unlike public registries, where images are

accessible to anyone, private registries allow organizations to enforce

access controls and security policies tailored to their needs. Private

registries also offer features such as image signing, vulnerability scanning,

and audit logging, which enhance the overall security of the container

lifecycle. [5]

Organizations should consider setting up private registries for their

containerized workloads, especially for sensitive or proprietary

applications. Tools like Harbor, Nexus Repository, and Azure Container

Registry provide robust solutions for managing private container registries

with advanced security features. [12]

2. Secure Communication:

All communication between the container registry and clients (such as

Docker CLI or Kubernetes) should be encrypted using Transport Layer

Security (TLS/SSL). This prevents man-in-the-middle attacks, where an

attacker could intercept and alter the communication between the client and

the registry. Secure communication also ensures that the integrity of the

images is maintained during transfer, preventing unauthorized

modifications. [3]

202 | P a g e

Organizations should enforce the use of TLS/SSL for all connections to the

container registry and ensure that certificates are managed securely. Self-

signed certificates should be avoided in production environments, as they

can be easily spoofed, compromising the security of the communication

channel. [4]

3. Access Control:

Access control mechanisms are crucial for preventing unauthorized access

to container images stored in a registry. Role-based access control (RBAC)

is commonly used to assign permissions based on the user's role within the

organization. For example, developers may have permission to push images

to the registry, while deployment teams may only have permission to pull

images. Sensitive images, such as those containing proprietary code or

sensitive configurations, can be restricted to a limited group of users. [13]

In addition to RBAC, organizations should consider implementing multi-

factor authentication (MFA) for accessing the container registry. MFA adds

an extra layer of security by requiring users to provide two or more

verification factors to gain access. This significantly reduces the risk of

unauthorized access, even if a user's credentials are compromised.

Securing the Build Process

The security of the containerized environment is closely tied to the security

of the build process. A compromised build pipeline can lead to the

deployment of vulnerable or malicious containers, making it essential to

implement robust security measures throughout the build process. [3]

1. CI/CD Pipeline Security:

203 | P a g e

Continuous integration and continuous deployment (CI/CD) pipelines are

integral to modern software development, enabling rapid and automated

delivery of code changes. However, these pipelines can also be a vector for

security attacks if not properly secured. Securing the CI/CD pipeline

involves implementing strong authentication and access controls, ensuring

that only authorized personnel can trigger builds or modify the pipeline

configuration. [7]

Organizations should also secure the environments where builds are

executed. Build environments should be isolated from production systems

to prevent any potential compromise during the build process from affecting

live applications. Additionally, build tools and dependencies should be

regularly updated to patch any known vulnerabilities. [14]

2. Automated Security Testing:

Automated security testing is a key component of a secure CI/CD pipeline.

By integrating security tests into the build process, organizations can detect

and remediate vulnerabilities before the application is deployed. These tests

can include static code analysis, which scans the source code for security

flaws, and dependency scanning, which checks for vulnerabilities in the

libraries and frameworks used by the application.

Configuration checks are also important, ensuring that the containerized

application adheres to security best practices. For example, automated tests

can verify that containers do not run as root, that network policies are

correctly configured, and that sensitive information is not exposed. [15]

3. Immutable Builds:

204 | P a g e

Immutable builds are a security practice where once an image is built, it is

not modified. This ensures that the same image is used across all

environments, from development to production, reducing the risk of

inconsistencies and vulnerabilities. Immutable builds also simplify the

process of rolling back to a previous version in case of an issue, as the exact

same image can be redeployed without any changes. [4]

To implement immutable builds, organizations should use version control

systems to track changes to the image's Dockerfile and configuration. Each

build should be tagged with a unique identifier, allowing it to be referenced

consistently across environments. This practice not only enhances security

but also improves the reliability and predictability of deployments.

Orchestration and Deployment Security

Securing Kubernetes and Other Orchestration Platforms

Container orchestration platforms like Kubernetes have become essential

for managing large-scale containerized applications. These platforms

automate the deployment, scaling, and management of containers, but their

complexity introduces significant security challenges. Securing the

orchestration platform is critical to ensuring the overall security of the

containerized environment.

1. Kubernetes API Security:

The Kubernetes API server is the central component of a Kubernetes

cluster, responsible for managing all interactions between users and the

cluster. As such, it is a prime target for attackers seeking to gain

unauthorized access to the cluster. Securing the Kubernetes API server

involves enforcing strong authentication mechanisms, such as client

205 | P a g e

certificates, OAuth tokens, or service accounts, to ensure that only

authorized users and services can access the API.

Role-based access control (RBAC) should also be implemented to limit the

actions that users can perform through the API. For example, a user

responsible for deploying applications should not have the ability to modify

the cluster's network configuration. By assigning permissions based on the

principle of least privilege, organizations can reduce the risk of accidental

or malicious changes to the cluster.

In addition to authentication and access control, organizations should

restrict network access to the API server. The API server should only be

accessible from trusted networks or through a secure VPN. Public exposure

of the API server to the internet should be avoided, as it increases the risk

of brute force attacks and other security threats.

2. Network Policies:

Kubernetes Network Policies provide a way to control the communication

between pods in a cluster. By default, Kubernetes allows all pods to

communicate with each other, which can be a security risk if a pod is

compromised. Network Policies allow organizations to define rules that

restrict traffic between pods, effectively creating micro-segmentation

within the cluster.

For example, a Network Policy can be configured to allow communication

only between specific pods that need to interact with each other, such as

between an application pod and its associated database pod. This limits the

potential for lateral movement within the cluster, where an attacker who

gains control of one pod could attempt to compromise other pods.

206 | P a g e

Implementing Network Policies requires careful planning and testing, as

overly restrictive policies can disrupt application functionality. However,

when done correctly, Network Policies are a powerful tool for enhancing

the security of a Kubernetes cluster.

3. Pod Security Policies:

Pod Security Policies (PSP) are another important security feature in

Kubernetes, allowing administrators to define a set of security standards

that pods must adhere to before they can be deployed. PSPs can enforce

restrictions such as disallowing privileged containers, requiring read-only

root filesystems, and restricting the use of host namespaces.

For example, a PSP can be configured to prevent containers from running

as root, a common security best practice that reduces the risk of privilege

escalation. Similarly, PSPs can enforce the use of specific Linux

capabilities, ensuring that containers do not have access to unnecessary

system privileges.

Pod Security Policies are particularly useful in multi-tenant environments,

where different teams or applications share the same Kubernetes cluster. By

enforcing consistent security standards across all pods, organizations can

reduce the risk of misconfigurations and vulnerabilities.

4. Secrets Management:

Managing sensitive information, such as API keys, passwords, and

certificates, is a critical aspect of securing a containerized environment.

Kubernetes Secrets provide a built-in mechanism for storing and managing

this information securely. However, improper management of Secrets can

lead to exposure of sensitive data. [3]

207 | P a g e

Organizations should ensure that Secrets are encrypted both at rest and in

transit. Kubernetes provides built-in support for encrypting Secrets at rest

using encryption providers such as AWS KMS or HashiCorp Vault.

Additionally, access to Secrets should be tightly controlled, with RBAC

policies limiting which users and services can access specific Secrets.

Another best practice is to avoid hardcoding Secrets into container images

or configuration files. Instead, Secrets should be injected into containers at

runtime, reducing the risk of accidental exposure. Kubernetes supports this

through environment variables or mounted volumes, ensuring that Secrets

are only available to the containers that need them. [16]

5. Cluster Hardening:

Hardening the Kubernetes cluster involves securing the underlying

infrastructure and configuration to minimize the risk of attacks. This

includes disabling unnecessary features, applying security patches

promptly, and following best practices for securing the cluster's

components. [3]

For example, organizations should disable the Kubernetes Dashboard in

production environments unless it is strictly necessary, as it provides a web-

based interface that can be exploited if not properly secured. Similarly, the

Kubernetes kubelet, which is responsible for managing individual nodes in

the cluster, should be configured to require authentication and should not

expose its API to the internet. [6]

Regularly updating Kubernetes and its components is essential to protect

against known vulnerabilities. Organizations should monitor for security

updates and apply patches as soon as they become available. Additionally,

208 | P a g e

using a minimal base image for control plane components can reduce the

attack surface and improve the security of the cluster. [2]

Runtime Security

Securing containers during runtime is one of the most challenging aspects

of container security, as this is when containers are most vulnerable to

attacks. Runtime security involves monitoring container activity, detecting

and responding to threats, and implementing measures to limit the impact

of a potential compromise. [8]

1. Runtime Threat Detection:

Runtime threat detection is the process of monitoring container activity for

signs of malicious behavior. This can include detecting unexpected network

connections, privilege escalation attempts, or unauthorized access to

sensitive data. Tools like Falco and Sysdig Secure are designed specifically

for runtime security in containerized environments, providing real-time

monitoring and alerting based on predefined security rules.

For example, Falco can be configured to detect if a container attempts to

write to a sensitive directory, such as /etc or /usr, which could indicate a

potential attack. Similarly, Sysdig Secure can monitor network traffic to

detect communication with known malicious IP addresses or abnormal

patterns that may indicate a distributed denial-of-service (DDoS) attack. [1]

Runtime threat detection tools should be integrated with the organization's

broader security monitoring and incident response systems. This allows for

automated responses to detected threats, such as isolating a compromised

container or triggering an alert for further investigation. [9]

2. Container Sandboxing:

209 | P a g e

Container sandboxing provides an additional layer of isolation for

containers, further reducing the risk of a compromise affecting the host

system or other containers. Sandboxing involves running containers in a

restricted environment where their access to system resources is tightly

controlled.

Tools like gVisor and Kata Containers offer container sandboxing by

running containers in lightweight virtual machines (VMs) or using a user-

space kernel to enforce strict security boundaries. This approach provides a

higher level of isolation compared to traditional containers, making it more

difficult for an attacker to escape the container and compromise the host

system. [17]

While sandboxing can improve security, it may also introduce performance

overhead and complexity. Organizations should evaluate the trade-offs and

consider sandboxing for high-risk workloads or environments where

security is a top priority. [3]

3. Limiting Resource Usage:

Resource limits are an essential part of container runtime security, as they

prevent a single container from consuming excessive resources and

potentially disrupting other services. Kubernetes allows administrators to

set limits on CPU and memory usage for each container, ensuring that no

container can monopolize system resources. [7]

Setting appropriate resource limits can also mitigate the impact of denial-

of-service (DoS) attacks, where an attacker attempts to overwhelm a service

by consuming all available resources. By limiting the resources allocated to

each container, organizations can prevent a single compromised container

from affecting the entire host system.

210 | P a g e

In addition to CPU and memory limits, organizations should consider

setting limits on other resources, such as disk I/O and network bandwidth,

to further isolate containers and reduce the risk of resource exhaustion.

4. Continuous Monitoring and Logging:

Continuous monitoring and logging are critical for maintaining visibility

into the security of a containerized environment. Monitoring tools like

Prometheus, Grafana, and ELK (Elasticsearch, Logstash, Kibana) provide

real-time insights into container activity, resource usage, and system

performance. [15]

Centralized logging solutions collect logs from all containers and cluster

components, allowing security teams to analyze and correlate events across

the environment. This can help identify patterns of suspicious behavior,

such as repeated failed login attempts or unauthorized access to sensitive

files.

In addition to monitoring and logging, organizations should implement

alerting mechanisms that notify the security team of potential incidents.

Automated alerts can be triggered based on predefined thresholds or

anomaly detection algorithms, enabling a rapid response to emerging

threats. [2]

Access Control and Identity Management

Fine-Grained Access Control

Access control is a cornerstone of container security, ensuring that only

authorized users and services can interact with the containerized

environment. Fine-grained access control involves implementing detailed

211 | P a g e

policies that define who can access what resources and what actions they

can perform. [18]

In Kubernetes, Role-Based Access Control (RBAC) provides a powerful

mechanism for managing access to the cluster. RBAC allows administrators

to define roles with specific permissions and assign those roles to users,

groups, or service accounts. For example, a developer might be granted

permissions to deploy applications and view logs, but not to modify network

policies or access Secrets. [7]

Fine-grained access control helps enforce the principle of least privilege,

where users and services are granted only the permissions they need to

perform their tasks. This reduces the risk of accidental or malicious actions

that could compromise the security of the environment.

In addition to RBAC, organizations should consider implementing Network

Policies to control communication between pods. By defining rules that

restrict traffic between pods, organizations can prevent unauthorized access

and limit the impact of a potential compromise.

Multi-Factor Authentication (MFA)

Multi-Factor Authentication (MFA) adds an extra layer of security by

requiring users to provide two or more verification factors to gain access to

the containerized environment. MFA is particularly important for accessing

critical components, such as the Kubernetes API server, container registry,

or CI/CD pipeline.

MFA can include a combination of something the user knows (e.g., a

password), something the user has (e.g., a hardware token or mobile

device), and something the user is (e.g., a biometric factor). By requiring

212 | P a g e

multiple factors, MFA significantly reduces the risk of unauthorized access,

even if a user's credentials are compromised. [3]

Organizations should enforce MFA for all privileged accounts and consider

extending it to all users with access to sensitive resources. MFA should also

be integrated with identity providers and Single Sign-On (SSO) systems to

streamline the authentication process while maintaining strong security.

Identity Federation

Identity federation involves integrating identity management systems with

the containerized environment to ensure consistent access policies across

the organization. Identity federation allows users to authenticate using their

corporate credentials, providing a seamless and secure experience. [12]

Technologies like OpenID Connect (OIDC) and Lightweight Directory

Access Protocol (LDAP) are commonly used for identity federation in

Kubernetes. By federating identities, organizations can centralize access

management, enforce consistent security policies, and simplify the user

experience. [2]

Identity federation also supports Single Sign-On (SSO), allowing users to

authenticate once and access multiple services without re-entering their

credentials. This reduces the risk of password fatigue and improves security

by minimizing the number of credentials users need to manage.

Compliance and Governance

Regulatory Compliance

Regulatory compliance is a critical consideration for organizations

operating in regulated industries, such as finance, healthcare, or

213 | P a g e

government. Containerized workloads must comply with relevant industry

regulations and standards, such as GDPR, HIPAA, or PCI-DSS.

To achieve compliance, organizations must implement security controls

that meet the requirements of the applicable regulations. This may include

data encryption, access controls, auditing, and incident response planning.

Compliance scanning tools can help automate the process of verifying that

containerized workloads meet regulatory requirements.

In addition to technical controls, organizations should establish governance

frameworks that define roles, responsibilities, and processes for maintaining

compliance. Regular audits and assessments are essential to ensure that

compliance is maintained as the environment evolves.

Audit and Accountability

Auditability is a key aspect of security and compliance in containerized

environments. Organizations must be able to track and document all actions

taken within the environment, including deployments, configuration

changes, and access to sensitive data. [4]

Kubernetes provides auditing capabilities that log all API requests,

including the identity of the requester, the action taken, and the result. These

logs can be stored in a centralized logging system for analysis and retention.

Audit logs should be regularly reviewed to detect signs of unauthorized

access or other suspicious activities. Organizations should also implement

retention policies that ensure audit logs are kept for the required period to

meet regulatory requirements.

Accountability is equally important, ensuring that all actions can be traced

back to an individual or service account. This helps prevent unauthorized

214 | P a g e

actions and provides a clear record of who is responsible for changes in the

environment.

Incident Response Planning

Incident response planning is essential for managing security incidents in a

containerized environment. An effective incident response plan should

include procedures for detecting, responding to, and recovering from

security incidents.

Organizations should develop incident response playbooks that outline

specific actions to be taken in the event of an incident, such as isolating a

compromised container, investigating the root cause, and restoring services.

These playbooks should be regularly tested and updated to reflect changes

in the environment and emerging threats. [19]

In addition to technical response measures, organizations should establish

communication protocols for notifying stakeholders and regulatory

authorities in the event of a breach. Clear communication is essential for

managing the impact of an incident and maintaining trust with customers

and partners. [3]

Continuous Compliance Monitoring

Continuous compliance monitoring is necessary to ensure that containerized

workloads remain compliant with regulatory requirements and internal

policies. This involves monitoring the environment in real-time for

configuration drifts, policy violations, and other indicators of non-

compliance. [6]

Tools like Open Policy Agent (OPA) and Gatekeeper can be integrated with

Kubernetes to enforce compliance policies at runtime. These tools allow

215 | P a g e

organizations to define and enforce policies that govern various aspects of

the environment, such as network security, access control, and resource

usage. [8]

By implementing continuous compliance monitoring, organizations can

detect and remediate issues before they lead to security incidents or

regulatory violations. This proactive approach helps maintain a strong

security posture and ensures that the environment remains compliant as it

evolves. [20]

Conclusion

Containerization has transformed the way organizations develop, deploy,

and manage applications, offering unprecedented benefits in terms of

scalability, flexibility, and efficiency. However, these benefits come with

unique security challenges that require a tailored approach to security.

Traditional security models must be adapted to address the dynamic and

distributed nature of containerized workloads. [21]

This paper has explored advanced security strategies for securing

containerized environments, covering the entire container lifecycle from

image creation to runtime. By implementing these strategies, organizations

can mitigate risks, protect against evolving threats, and maintain a strong

security posture.

Securing containerized workloads requires a multi-layered approach that

includes image security, orchestration platform hardening, runtime security,

access control, and compliance management. These strategies, when

combined with robust monitoring, logging, and incident response measures,

provide a comprehensive security framework that can protect containerized

environments in any setting. [22]

216 | P a g e

As container technology continues to evolve, so too must the security

practices that protect it. Organizations must stay informed of emerging

threats and continuously refine their security strategies to ensure that they

can reap the benefits of containerization without compromising on security.

With the right strategies in place, containerized workloads can be deployed

with confidence, knowing that they are protected against the full spectrum

of security risks. [23]

References
[1] Kochovski P., "Dependability of container-based data-centric systems.",

Security and Resilience in Intelligent Data-Centric Systems and

Communication Networks, 2017, pp. 7-27.

[2] Sun J., "Blockchain-based automated container cloud security

enhancement system.", Proceedings - 2020 IEEE International Conference

on Smart Cloud, SmartCloud 2020, 2020, pp. 1-6.

[3] Lingayat A., "Integration of linux containers in openstack: an

introspection.", Indonesian Journal of Electrical Engineering and Computer

Science, vol. 12, no. 3, 2018, pp. 1094-1105.

[4] Suneja S., "Can container fusion be securely achieved?.", WOC 2019 -

Proceedings of the 2019 5th International Workshop on Container

Technologies and Container Clouds, Part of Middleware 2019, 2019, pp.

31-36.

[5] Bila N., "Leveraging the serverless architecture for securing linux

containers.", Proceedings - IEEE 37th International Conference on

Distributed Computing Systems Workshops, ICDCSW 2017, 2017, pp.

401-404.

[6] Hamilton M., "Large-scale intelligent microservices.", Proceedings -

2020 IEEE International Conference on Big Data, Big Data 2020, 2020, pp.

298-309.

217 | P a g e

[7] Bhowmik S., "Container based on-premises cloud security framework.",

Proceedings of the 5th International Conference on Inventive Computation

Technologies, ICICT 2020, 2020, pp. 773-778.

[8] Zhang Z., "Security in network functions virtualization.", Security in

Network Functions Virtualization, 2017, pp. 1-272.

[9] Hewage P., "An agile farm management information system framework

for precision agriculture.", ACM International Conference Proceeding

Series, 2017, pp. 75-80.

[10] Zheng T., "Bigvm: a multi-layer-microservice-based platform for

deploying saas.", Proceedings - 5th International Conference on Advanced

Cloud and Big Data, CBD 2017, 2017, pp. 45-50.

[11] Jani, Y. "Security best practices for containerized applications."

Journal of Scientific and Engineering Research 8.8 (2021): 217-221.

[12] Khan A., "Key characteristics of a container orchestration platform to

enable a modern application.", IEEE Cloud Computing, vol. 4, no. 5, 2017,

pp. 42-48.

[13] Tak B., "Security analysis of container images using cloud analytics

framework.", Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 10966 LNCS, 2018, pp. 116-133.

[14] Lin X., "A measurement study on linux container security: attacks and

countermeasures.", ACM International Conference Proceeding Series,

2018, pp. 418-429.

[15] Tanwani A.K., "A fog robotics approach to deep robot learning:

application to object recognition and grasp planning in surface

decluttering.", Proceedings - IEEE International Conference on Robotics

and Automation, vol. 2019-May, 2019, pp. 4559-4566.

[16] Shah A.A., "A qualitative cross-comparison of emerging technologies

for software-defined systems.", 2019 6th International Conference on

Software Defined Systems, SDS 2019, 2019, pp. 138-145.

218 | P a g e

[17] Huang C.H., "Enhancing the availability of docker swarm using

checkpoint-and-restore.", Proceedings - 14th International Symposium on

Pervasive Systems, Algorithms and Networks, I-SPAN 2017, 11th

International Conference on Frontier of Computer Science and Technology,

FCST 2017 and 3rd International Symposium of Creative Computing, ISCC

2017, vol. 2017-November, 2017, pp. 357-362.

[18] Xu C., "Isopod: an expressive dsl for kubernetes configuration.", SoCC

2019 - Proceedings of the ACM Symposium on Cloud Computing, 2019,

pp. 483.

[19] Xie B., "Prediction-based autoscaling for container-based paas

system.", Proceedings - 2017 IEEE 2nd International Conference on

Automatic Control and Intelligent Systems, I2CACIS 2017, vol. 2017-

December, 2017, pp. 19-24.

[20] Islam M.S., "Secure real-time heterogeneous iot data management

system.", Proceedings - 1st IEEE International Conference on Trust,

Privacy and Security in Intelligent Systems and Applications, TPS-ISA

2019, 2019, pp. 228-235.

[21] Yousefpour A., "All one needs to know about fog computing and

related edge computing paradigms: a complete survey.", Journal of Systems

Architecture, vol. 98, 2019, pp. 289-330.

[22] Yu D., "A survey on security issues in services communication of

microservices-enabled fog applications.", Concurrency and Computation:

Practice and Experience, vol. 31, no. 22, 2019.

[23] Bao L., "Performance modeling and workflow scheduling of

microservice-based applications in clouds.", IEEE Transactions on Parallel

and Distributed Systems, vol. 30, no. 9, 2019, pp. 2101-2116.

