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Abstract 
Healthcare is among the most advanced industries when it comes to embracing and adopting modern 

technology in some way. Cloud computing approaches, in conjunction with the Internet of Things, are 

advantageous to extract information from healthcare records. In many cases, cloud computing combined 

with IoT and AI will pave the way for new avenues of medical innovation and insight. Cloud computing's 

growing acceptance in healthcare extends much beyond simply storing data on cloud infrastructure. 

Healthcare providers are already embracing this technology to increase efficiency, optimize processes, 

reduce healthcare costs. The objective of this research was to investigate whether the deployment of cloud 

computing can assist in reducing operational costs in healthcare centers. We used panel data ranging from 

2008 to 2019 for 156 healthcare centers. The Fixed Effect (FE) model and Random Effect (RE) model 

have been employed. The results suggest that the deployment of cloud computing significantly assists in 

reducing the operational costs in healthcare centers.  
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1. Introduction  

The use of cloud computing in the healthcare business began years ago, but progressed slowly due 

to several obstacles. It has received fresh speed in recent years as a result of technological 

advancements, higher client demands, and the worldwide pandemic. 

Moving to the cloud offers two distinct advantages. It has been shown to benefit both healthcare 

providers and patients. On the commercial side, cloud computing has been shown to benefit 

healthcare providers by lowering operating costs while enabling them to offer high-quality, tailored 

treatment (Onwubiko, 2010). Patients, who have become accustomed to rapid service delivery, 

now receive it from the health sector as well. Additionally, cloud technology increases patient 

participation with their own health plans by providing access to their own health data, leading in 

improved patient outcomes. The democratization of healthcare data and its remote accessibility 

liberates both clinicians and patients and eliminates geographical obstacles to healthcare. 

Cloud computing's fundamental assumption is the on-demand accessibility of computer resources 

such as data storage and computational power. Hospitals and healthcare professionals are no 

longer required to buy hardware and servers entirely (Buyya, Beloglazov and Abawajy, 2010). There 

are no upfront costs connected with data storage in the cloud. They simply pay for the resources 

they utilize, resulting in significant cost savings. 

Additionally, cloud computing provides the most ergonomic environment for scalability, which is 

a desired characteristic in today's world. With patient data streaming in not only from EMRs but 

also from a myriad of healthcare applications and wearables, a cloud-based platform is ideal for 

expanding and undergoing significant makeover while keeping costs down (Mirza and El-Masri, 

2013). 

Historically, healthcare organizations have stored their data on-premises because it enables them 

to keep complete control over their in-house data, limit the risk of data breach, and manage their 

own backup and recovery systems. However, with the rising complexity of healthcare big data, 

which comprises several geographically dispersed healthcare institutions and an expanding variety 

of smart health apps, there is no "one-size-fits-all" solution available today. Managing large data 

storage, changing real-time data from IoT devices, Bring Your Own Device (BYOD) policies, 

enforcing security, compliance, and availability, and providing ubiquitous access to on-premise 

healthcare data storage is getting more difficult (French, Guo and Shim, 2014). 

With the advancement of medical technologies, the quality and volume of medical imaging data 

has risen. As a result, a scalable infrastructure is required for storing the growing volume of 

healthcare big data. Additionally, for major healthcare organizations with care centers located in 

various geographic regions, data is spread across several servers located in various places. Often, 

though, such data must be available to multiple people from several places. Healthcare data storage 

should be accessible 24 hours a day, which requires a dependable and available storage solution 

(Magrabi et al., 2015). 

The healthcare business is required to invest heavily in updating and expanding storage capacity in 

order to make it more flexible and scalable, which can be expensive. Additionally, managing the 

diverse array of clinical data provided by EMR, IoT, medical imaging, and genomic sequencing 

can be hard (Manogaran et al., 2017). 
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Smart healthcare systems create a large quantity of data, which is referred to as healthcare big data. 

These data include both traditional electronic medical record (EMR) or electronic health record 

(EHR) systems data. 

On-premise storage is frequently inflexible. It is necessary for the storage solution to be scalable, 

which means that additional storage capacity may be added without requiring a total upgrade and 

conversion, which is not always the case. Expanding on-premise storage capacity also entails 

increasing physical space on-site, which may be difficult to handle. Apart from the expenses of 

extra storage solutions, there are also operating expenditures like as power supply, cooling of server 

rooms, and IT employees, which combine to make on-premise data storage a relatively expensive 

alternative (Herre, 2016). On-premise storage may potentially have a higher delay in recovering 

from an attack or failure, depending on the backup plan in place. Due to the crucial nature of 

healthcare data, extended downtime can have a significant impact on the quality of treatment 

provided to patients when patient data is not readily available. 

Apart from the immediate economic benefits of cloud storage over on-premises data storage, 

enterprises profit in the long run from easier upgrades and lower scaling costs (Mogouie, Arani 

and Shamsi, 2015). Cloud storage providers for healthcare use economies of scale to help their 

clients – hospitals and healthcare institutions – reduce data management expenses (Kossmann and 

Kraska, 2010). 

Additionally, cloud computing provides greater flexibility in healthcare due to the standard pay-as-

you-go cost structure connected with data storage (Sultan, 2010). When healthcare institutions 

develop their own data storage systems, they must estimate the capacity they require and invest 

their own money to expand that capacity when storage space becomes scarce. With cloud-based 

solutions, all it takes is a simple contact to service provider to increase data storage capacity to the 

required levels. 

2. Methodology 

This research utilizes the panel data techniques to achieve the research objective. If have access to 

a panel of data, there are significant advantages to fully utilizing this rich structure. To begin, and 

probably most significantly, panel data enables us to address a broader range of topics and solve 

more complicated problems than is achievable with pure time series or cross-sectional data alone. 

Second, it is frequently interesting to investigate how variables, or their relationships, change 

dynamically (over time). To accomplish this with pure time series data, it is frequently necessary 

to run the data for an extended period of time in order to obtain a sufficient number of 

observations to conduct any relevant hypothesis tests. However, by combining cross sectional and 

time series data, one can enhance the number of degrees of freedom and hence the strength of the 

test by simultaneously incorporating information about the dynamic behavior of a large number 

of entities. Additionally, the additional variance produced by integrating the data in this manner 

can assist alleviate multicollinearity issues that may develop when time series are simulated 

separately. Third, as will become clear below, by appropriately designing the model, one can 

eliminate the effect of certain types of omitted variables bias in regression findings. 

In empirical research, panel estimator approaches fall into two basic categories: Fixed Effects (FE) 

models and Random Effects (RE) models (Borenstein et al., 2010). The simplest types of fixed 
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effects models allow for cross-sectional but not longitudinal variation in the intercept, whereas all 

slope estimates are fixed cross-sectionally and longitudinally. While this approach is clearly more 

sparing than SUR models (which requires the estimation of (N + k) parameters), it still involves 

the estimation of (N + k) parameters. 

Under the fixed-effect paradigm, it is assumed that the true effect size is identical across studies 

and that the only cause for variation in effect size is sampling error (error in estimating the effect 

size). As a result, while weighting the various research, we may basically disregard the information 

from smaller studies because we have more information on the same effect size from larger studies. 

By contrast, the purpose of the random-effects model is to estimate the mean of a distribution of 

effects, not a single real effect. Because each study reports on a distinct effect size, it is required to 

ensure that the summary estimate includes all of these effect sizes.  

To estimate the impact of cloud computing on healthcare center’s operational expenses, we used 

the model by (Bardhan and Thouin, 2013) 

 

𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠𝑂𝑝𝑖𝑡

= 𝛼 + 𝛽1𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑖𝑡 + 𝛽2𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝑖𝑡

+ 𝛽3𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑖𝑡 + 𝛽4𝐻𝑅𝑖𝑡 + 𝛽5𝐻𝑜𝑠𝑝𝑇𝑦𝑝𝑒𝑖𝑡

+ 𝛽6𝐶𝑀𝐼𝑖𝑡 + 𝛽7𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 + 𝛽8𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠𝑖𝑡

+ 𝛽9 𝐶𝑙𝑜𝑢𝑑𝑖𝑡 + 𝜖 

 

Where, the expensesopit is the dependent variable. It represents the operational cost efficiency index. 

The variables Financial, Clinical, Scheduling, HR represents the usage of IT in financial, clinical, 

scheduling, and HR management system, respectively. The variable HospTypes is a dummy 

variable. It takes zero if the healthcare center is private, and one if it is public. The variable CMI 

indicate case mix index of healthcare centers. Location is a dummy variable. It takes zero if the 

healthcare center is in rural area, and one if it is in urban area. TeachingStatus is also a dummy 

variable. It takes zero if the healthcare center is non-teaching, and one if it is teaching. The variable 

Cloud is assigned zero if the healthcare center does not deploy cloud computing, and is assigned 

one if it deploys cloud computing.  The panel data set ranging from 2008 to 2019 for 156 centers 

has been collected from Dorenfest Institute for Health Information Technology Research 

database.  
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2. Results  

Table 1. Fixed effect model  

 

Dependent Variable: EX_OP  

Method: Panel Least Squares  

  

Sample: 2008 2019   

Periods included: 12   

Cross-sections included: 156  

Total panel (balanced) observations: 1872 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     CLINICAL 1.005079 0.037468 26.82534 0.0000 

CLOUD 0.952436 0.031070 30.65429 0.0000 

CMI 1.002382 0.037672 26.60829 0.0000 

FIANANCIAL 0.977306 0.037744 25.89311 0.0000 

HOSPTYPE -0.007482 0.021675 -0.345186 0.7300 

HR 0.955607 0.038110 25.07510 0.0000 

LOCATION 0.968391 0.030585 31.66226 0.0000 

SCHEDULING 0.998143 0.038194 26.13348 0.0000 

TEACHING_STATUS 0.995650 0.030548 32.59318 0.0000 

C 1.080687 0.053708 20.12152 0.0000 
     
      Effects Specification   
     
     Cross-section fixed (dummy variables) 
     
     R-squared 0.801847     Mean dependent var 5.009639 

Adjusted R-squared 0.782809     S.D. dependent var 0.967021 

S.E. of regression 0.450668     Akaike info criterion 1.327839 

Sum squared resid 346.6939     Schwarz criterion 1.815678 

Log likelihood -1077.857     Hannan-Quinn criter. 1.507563 

F-statistic 42.11919     Durbin-Watson stat 2.064366 

Prob(F-statistic) 0.000000    
     
     

 

The results of Fixed effect model have been reported in table 1. With R-squared of 0.80, the model 

seems to be good-fit. The t-statistics and associated values indicate that all the variables are 

significant except hospital type. It implies that the operational costs are same whether the 

healthcare centers public or private.  

 

Table 2. Random effect model  

Dependent Variable: EX_OP  

Method: Panel EGLS (Cross-section random effects) 

  

Sample: 2008 2019   

Periods included: 12   

Cross-sections included: 156  

Total panel (balanced) observations: 1872 

Swamy and Arora estimator of component variances 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
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CLINICAL 0.994829 0.036330 27.38276 0.0000 

CLOUD 0.967995 0.029965 32.30457 0.0000 

CMI 0.999314 0.036493 27.38335 0.0000 

FIANANCIAL 0.973150 0.036315 26.79727 0.0000 

HOSPTYPE -0.006957 0.021004 -0.331229 0.7405 

HR 0.963443 0.036855 26.14163 0.0000 

LOCATION 0.961085 0.029281 32.82320 0.0000 

SCHEDULING 1.014508 0.036701 27.64288 0.0000 

TEACHING_STATUS 0.999997 0.029658 33.71738 0.0000 

C 1.070790 0.052103 20.55157 0.0000 
     
      Effects Specification   

   S.D.   Rho   
     
     Cross-section random 0.058419 0.0165 

Idiosyncratic random 0.450668 0.9835 
     
      Weighted Statistics   
     
     R-squared 0.780472     Mean dependent var 4.570032 

Adjusted R-squared 0.779411     S.D. dependent var 0.959829 

S.E. of regression 0.450803     Sum squared resid 378.4011 

F-statistic 735.5353     Durbin-Watson stat 1.893845 

Prob(F-statistic) 0.000000    
     
      Unweighted Statistics   
     
     R-squared 0.780086     Mean dependent var 5.009639 

Sum squared resid 384.7678     Durbin-Watson stat 1.862508 
     
     

 

The Random effect model also yields also similar results. Table 1 summarizes the results of the 

Random effect model. The model appears to be well-fit with an R-squared of 0.80. The t-statistics 

and accompanying values suggest that all variables except hospital type are significant. This 

suggests that the operational expenses are the same for public and private healthcare facilities. 
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Table 3. Confidence intervals at 90, 95, and 99 percent  

 

Coefficient Confidence Intervals      

       

Sample: 2008 2019        

Included observations: 1872       
           
              90% CI  95% CI  99% CI 

Variable Coefficient  Low High  Low High  Low High 
           
           CLINICAL  0.994829   0.935041  1.054617   0.923576  1.066082   0.901152  1.088506 

CLOUD  0.967995   0.918683  1.017307   0.909227  1.026763   0.890732  1.045258 

CMI  0.999314   0.939258  1.059370   0.927741  1.070886   0.905216  1.093411 

FIANANCIAL  0.973150   0.913387  1.032913   0.901927  1.044373   0.879512  1.066788 

HOSPTYPE -0.006957  -0.041522  0.027608  -0.048150  0.034236  -0.061114  0.047200 

HR  0.963443   0.902792  1.024094   0.891162  1.035724   0.868414  1.058472 

LOCATION  0.961085   0.912898  1.009271   0.903658  1.018511   0.885585  1.036584 

SCHEDULING  1.014508   0.954111  1.074905   0.942529  1.086486   0.919877  1.109139 

TEACHING_STATUS  0.999997   0.951189  1.048805   0.941830  1.058164   0.923524  1.076470 

C  1.070790   0.985046  1.156534   0.968604  1.172975   0.936445  1.205135 
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5. Conclusion 
Cloud computing accelerated the development of new solutions and made them accessible to 

anyone, anywhere, and at any time, allowing for infinite data storage and affordable access to 

cutting-edge solutions for everyone. Establishing on-site storage needs an initial investment in 

hardware, including hard drives for data storage and other IT infrastructure to ensure that data is 

always secure and accessible. Cloud-based healthcare solution providers manage the 

administration, installation, and maintenance of cloud data storage services, allowing healthcare 

providers to save money up front and focus on what they do best: caring for patients. The findings 
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of this research recommends to use cloud computing to improve cost efficiency of healthcare 

centers.  
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